Wild Speculation:
I am 70% confident that if we were smarter then we would not need it.
If you have some data that you (magically) know the likelihood and prior. Then you would have some uncertainty from the parameters in the model and some from the parameters, this would then change the form of the posterior for example from normal to a t-distribution to account for this extra uncertainty.
In the real world we assume a likelihood and guess a prior, and even with simple models such as y ~ ax + b we will usually model the residual errors as a normal distribution and thus thus loose some of the uncertainty, thus our residual errors are different in and out of sample.
Practical Reason
Also, a model with more* parameters will always have less residual errors (unless you screw up the prior) and thus the in sample predictions will seem better
Modern Bayesians have found two ways to solve this issue
- WAIC: Which uses information theory see how the posterior predictive distribution captures the generative process and penalizes for the effective number of parameters.
- PSIS-LOO: does a very fast version of LOO-CV where for each yi you factor that yi contribution to the posterior to get an out of sample posterior predictive estimate for yi.
Bayesian Models just like Frequentest Models are vulnerable to over fitting if they have many parameters and weak priors.
*Some models have parameters which constrains other parameters thus what I mean is "effective" parameters according to the WAIC or PSIS-LOO estimation, parameters with strong priors are very constrained and count as much less than 1.
👍 Could you please elaborate on how it relates to the Bayesian interpretation of test-set performance?