In my experience, constant-sum games are considered to provide "maximally unaligned" incentives, and common-payoff games are considered to provide "maximally aligned" incentives. How do we quantitatively interpolate between these two extremes? That is, given an arbitrary payoff table representing a two-player normal-form game (like Prisoner's Dilemma), what extra information do we need in order to produce a real number quantifying agent alignment?
If this question is ill-posed, why is it ill-posed? And if it's not, we should probably understand how to quantify such a basic aspect of multi-agent interactions, if we want to reason about complicated multi-agent situations whose outcomes determine the value of humanity's future. (I started considering this question with Jacob Stavrianos over the last few months, while supervising his SERI project.)
Thoughts:
- Assume the alignment function has range or .
- Constant-sum games should have minimal alignment value, and common-payoff games should have maximal alignment value.
- The function probably has to consider a strategy profile (since different parts of a normal-form game can have different incentives; see e.g. equilibrium selection).
- The function should probably be a function of player A's alignment with player B; for example, in a prisoner's dilemma, player A might always cooperate and player B might always defect. Then it seems reasonable to consider whether A is aligned with B (in some sense), while B is not aligned with A (they pursue their own payoff without regard for A's payoff).
- So the function need not be symmetric over players.
- The function should be invariant to applying a separate positive affine transformation to each player's payoffs; it shouldn't matter whether you add 3 to player 1's payoffs, or multiply the payoffs by a half.
The function may or may not rely only on the players' orderings over outcome lotteries, ignoring the cardinal payoff values. I haven't thought much about this point, but it seems important.EDIT: I no longer think this point is important, but rather confused.
If I were interested in thinking about this more right now, I would:
- Do some thought experiments to pin down the intuitive concept. Consider simple games where my "alignment" concept returns a clear verdict, and use these to derive functional constraints (like symmetry in players, or the range of the function, or the extreme cases).
- See if I can get enough functional constraints to pin down a reasonable family of candidate solutions, or at least pin down the type signature.
Quote: Or maybe we're playing a game in which the stag hunt matrix describes some sort of payouts that are not exactly utilities. E.g., we're in a psychology experiment and the experimenter has shown us a 2x2 table telling us how many dollars we will get in various cases -- but maybe I'm a billionaire and literally don't care whether I get $1 or $10 and figure I might as well try to maximize your payout, or maybe you're a perfect altruist and (in the absence of any knowledge about our financial situations) you just want to maximize the total take, or maybe I'm actually evil and want you to do as badly as possible.
So, if the other player is "always cooperate" or "always defect" or any other method of determining results that doesn't correspond to the payouts in the matrix shown to you, then you aren't playing "prisoner's dillema" because the utilities to player B are not dependent on what you do. In all these games, you should pick your strategy based on how you expect your counterparty to act, which might or might not include the "in game" incentives as influencers of their behavior.