Followup to: What's a "natural number"?
While thinking about how to make machines understand the concept of "integers", I accidentally derived a tiny little math result that I haven't seen before. Not sure if it'll be helpful to anyone, but here goes:
You're allowed to invent an arbitrary scheme for encoding integers as strings of bits. Whatever encoding you invent, I can give you an infinite input stream of bits that will make your decoder hang and never give a definite answer like "yes, this is an integer with such-and-such value" or "no, this isn't a valid encoding of any integer".
To clarify, let's work through an example. Consider an unary encoding: 0 is 0, 1 is 10, 2 is 110, 3 is 1110, etc. In this case, if we feed the decoder an infinite sequence of 1's, it will remain forever undecided as to the integer's value. The result says we can find such pathological inputs for any other encoding system, not just unary.
The proof is obvious. (If it isn't obvious to you, work it out!) But it seems to strike at the heart of the issue why we can't naively explain to computers what a "standard integer" is, what a "terminating computation" is, etc. Namely, if you try to define an integer as some observable interface (get first bit, get last bit, get CRC, etc.), then you inevitably invite some "nonstandard integers" into your system.
This idea must be already well-known and have some standard name, any pointers would be welcome!
I suspect that for most "naive" ways of constructing such a system X, the very long proof of inconsistency for X should reduce to a very short proof of inconsistency for X+Con(X), because the latter system should be enough to capture most "informal" reasoning that you used to construct X in the first place. The existence of such a proof wouldn't imply the inconsistency of X directly (there are consistent systems X such that X+Con(X) is inconsistent, e.g. X=Y+not(Con(Y)) where Y is consistent), but if PA+Con(PA) were ever shown to be inconsistent, that would be highly suggestive and would cause me to abandon my intuitions expressed above.
But as far as we know now, PA+Con(PA) looks just as consistent as PA itself. Moreover, I think you can add a countable-ordinal pile of iterated Con's on top and still get a system that's weaker than ZFC. (I'm not 100% confident of that, would be nice if someone corrected me!)
So I'm pretty confident that PA is consistent, conditional on the statement "PA is consistent" being meaningful. Note that you need a notion of "standard integers" to make sense of the latter statement too, because integers encode proofs.