Followup to: What's a "natural number"?
While thinking about how to make machines understand the concept of "integers", I accidentally derived a tiny little math result that I haven't seen before. Not sure if it'll be helpful to anyone, but here goes:
You're allowed to invent an arbitrary scheme for encoding integers as strings of bits. Whatever encoding you invent, I can give you an infinite input stream of bits that will make your decoder hang and never give a definite answer like "yes, this is an integer with such-and-such value" or "no, this isn't a valid encoding of any integer".
To clarify, let's work through an example. Consider an unary encoding: 0 is 0, 1 is 10, 2 is 110, 3 is 1110, etc. In this case, if we feed the decoder an infinite sequence of 1's, it will remain forever undecided as to the integer's value. The result says we can find such pathological inputs for any other encoding system, not just unary.
The proof is obvious. (If it isn't obvious to you, work it out!) But it seems to strike at the heart of the issue why we can't naively explain to computers what a "standard integer" is, what a "terminating computation" is, etc. Namely, if you try to define an integer as some observable interface (get first bit, get last bit, get CRC, etc.), then you inevitably invite some "nonstandard integers" into your system.
This idea must be already well-known and have some standard name, any pointers would be welcome!
You're welcome! I'm always glad to learn when knowledge I've gained through paperclip maximization has value to humans (though ideally I'd want to extract USD when such value is identified).
I should add (to extend this insight to some ot the particulars of your post) that the probability distribution on the integers implicitly assumed by the unary encoding you described is that smaller numbers are more likely (in proportion to their smallness), as do all n-ary number systems. So-called "scientific" notation instead favors "round" numbers, i.e. those padded with zeros the soonest in the least-significant-digit direction.
Your comments are often pleasant to read, but I don't pay USD for comments that are pleasant to read, and don't know anyone who does. Sorry.