Followup to: What's a "natural number"?
While thinking about how to make machines understand the concept of "integers", I accidentally derived a tiny little math result that I haven't seen before. Not sure if it'll be helpful to anyone, but here goes:
You're allowed to invent an arbitrary scheme for encoding integers as strings of bits. Whatever encoding you invent, I can give you an infinite input stream of bits that will make your decoder hang and never give a definite answer like "yes, this is an integer with such-and-such value" or "no, this isn't a valid encoding of any integer".
To clarify, let's work through an example. Consider an unary encoding: 0 is 0, 1 is 10, 2 is 110, 3 is 1110, etc. In this case, if we feed the decoder an infinite sequence of 1's, it will remain forever undecided as to the integer's value. The result says we can find such pathological inputs for any other encoding system, not just unary.
The proof is obvious. (If it isn't obvious to you, work it out!) But it seems to strike at the heart of the issue why we can't naively explain to computers what a "standard integer" is, what a "terminating computation" is, etc. Namely, if you try to define an integer as some observable interface (get first bit, get last bit, get CRC, etc.), then you inevitably invite some "nonstandard integers" into your system.
This idea must be already well-known and have some standard name, any pointers would be welcome!
Can I attempt a translation/expansion for Sewing-Machine of why you disagree with the last sentence?
It seems that there's an intuition among humans that the Ramsey result is true, in the sense that PA + PH captures our intuition of the integers more closely than PA + ~PH given the second order result. What you want is a computer to be able to make that sort of intuitive reasoning or to make it more precise. Is that more or less the point?
We can all agree that human intuition is grand but not magical, I hope? Here is my point of view: you are having difficulty teaching a computer to "make that sort of intuitive reasoning" because that sort of reasoning is not quite right.
"That sort of reasoning" is a good heuristic for discovering true facts about the world (for instance, discovering interesting sequences of symbols that constitute a formal proof of the Paris-Harrington theorem), and to that extent it surely can be taught to a computer. But it does not itself express... (read more)