Followup to: What's a "natural number"?
While thinking about how to make machines understand the concept of "integers", I accidentally derived a tiny little math result that I haven't seen before. Not sure if it'll be helpful to anyone, but here goes:
You're allowed to invent an arbitrary scheme for encoding integers as strings of bits. Whatever encoding you invent, I can give you an infinite input stream of bits that will make your decoder hang and never give a definite answer like "yes, this is an integer with such-and-such value" or "no, this isn't a valid encoding of any integer".
To clarify, let's work through an example. Consider an unary encoding: 0 is 0, 1 is 10, 2 is 110, 3 is 1110, etc. In this case, if we feed the decoder an infinite sequence of 1's, it will remain forever undecided as to the integer's value. The result says we can find such pathological inputs for any other encoding system, not just unary.
The proof is obvious. (If it isn't obvious to you, work it out!) But it seems to strike at the heart of the issue why we can't naively explain to computers what a "standard integer" is, what a "terminating computation" is, etc. Namely, if you try to define an integer as some observable interface (get first bit, get last bit, get CRC, etc.), then you inevitably invite some "nonstandard integers" into your system.
This idea must be already well-known and have some standard name, any pointers would be welcome!
Isn't this what Godel said?
No, it's completely different. The representation of integers as bit strings doesn't even have to be computable. There will always be an infinite string of bits of which no prefix represents any integer. This can be derived from König's Lemma, which says that if a finitely branching tree has paths of all finite lengths, it has an infinite path. Consider the infinite binary tree with the out-edges of each node labelled 0 and 1. Chop off all the descendants of every node that represents an integer and consider the tree that remains. Since there are infinitely many integers, there must be such nodes of arbitrarily large depth. Therefore the tree contains an infinite path.