If you've recently joined the Less Wrong community, please leave a comment here and introduce yourself. We'd love to know who you are, what you're doing, what you value, how you came to identify as a rationalist or how you found us. You can skip right to that if you like; the rest of this post consists of a few things you might find helpful. More can be found at the FAQ.
A few notes about the site mechanics
A few notes about the community
If English is not your first language, don't let that make you afraid to post or comment. You can get English help on Discussion- or Main-level posts by sending a PM to one of the following users (use the "send message" link on the upper right of their user page). Either put the text of the post in the PM, or just say that you'd like English help and you'll get a response with an email address.
* Normal_Anomaly
* Randaly
* shokwave
* Barry Cotter
A note for theists: you will find the Less Wrong community to be predominantly atheist, though not completely so, and most of us are genuinely respectful of religious people who keep the usual community norms. It's worth saying that we might think religion is off-topic in some places where you think it's on-topic, so be thoughtful about where and how you start explicitly talking about it; some of us are happy to talk about religion, some of us aren't interested. Bear in mind that many of us really, truly have given full consideration to theistic claims and found them to be false, so starting with the most common arguments is pretty likely just to annoy people. Anyhow, it's absolutely OK to mention that you're religious in your welcome post and to invite a discussion there.
A list of some posts that are pretty awesome
I recommend the major sequences to everybody, but I realize how daunting they look at first. So for purposes of immediate gratification, the following posts are particularly interesting/illuminating/provocative and don't require any previous reading:
- Your Intuitions are Not Magic
- The Apologist and the Revolutionary
- How to Convince Me that 2 + 2 = 3
- Lawful Uncertainty
- The Planning Fallacy
- Scope Insensitivity
- The Allais Paradox (with two followups)
- We Change Our Minds Less Often Than We Think
- The Least Convenient Possible World
- The Third Alternative
- The Domain of Your Utility Function
- Newcomb's Problem and Regret of Rationality
- The True Prisoner's Dilemma
- The Tragedy of Group Selectionism
- Policy Debates Should Not Appear One-Sided
- That Alien Message
More suggestions are welcome! Or just check out the top-rated posts from the history of Less Wrong. Most posts at +50 or more are well worth your time.
Welcome to Less Wrong, and we look forward to hearing from you throughout the site.
Your question is absolutely valid and also important. In fact, most of what I write in my paper and the blog is about answering precisely this.
My observer is well defined, as a mechanism that is part of a quantum system and who interacts with the quantum system to gather information about it. He is limited by the locality of interaction and the unitary nature of the evolution. I imagine the observer to be a physicist, who tries to describe the universe mathematically, based on what he sees. But that is only a trick in order to have a mathematical formulation of the subjective view. The observer is prototypical for any mechanism that tries to create a model of his surrounding. This approach is very different from modeling cognitive mechanisms, and it's also much more general. The information restriction is so fundamental that you can talk about his subjective reconstruction of what is going on as local subjective reality, as everyone has to share it.
The meaning of the dominant eigensubspace is then derived from this assumption. Specifically, I am able to identify a non-trivial transformation on the objective density operator of the observer's subsystem that he cannot gain any knowledge about. This transformation creates a class of equivalent representations that are all equally valid descriptions which the observer could use for making a model of his environment (and himself). The arbitrariness of the representation connected with this reconstruction however forces him to reduce his state description to something more elementary, something that all equivalent descriptions have in common. And that turns out to be the dominant eigensubspace as his best option. This point is very important, and the derivation I provide in the blog is rigorous and detailed. The result is that the subjective reality as reconstructed by any observer like this evolves unitarily if the greatest eigenvalue does not intersect with other eigenvalues (the observer himself cannot know the value of the eigenvalues either) or discontinuous as a formerly smaller eigenvalue intersects with the greatest one to become the new dominant eigenvalue. This requires an interaction with a part of the system that is not contained in the objective local state description, like an incoming photon.
This approach also has the advantage that you don't have to actually model the observer. You still know what information is available to him. That is why the observer does not even have to be part of the system that you want to "subjectify". You already know how he would describe it. Specifically, you don't have to consider any kind of entanglement between observer states and observed states. The dominant eigensubspace is a valid description of every system that the describing entity is part of and that contains everything the observer is directly interacting with. If you want to get quantum jumps you also need an external inaccessible environment.
Summarizing, there's no need to postulate the ontology or relevance of the dominant eigensubspace. I was very careful to only make assumptions that are transparent and to derive everything from there. Specifically I am not adopting any definition or terminology from interpretations of quantum theory.
I finally got as far as your main calculation (part IV in the paper). You have a two-state quantum system, a "qubit", and another two-state quantum system, a "photon". You make some assumptions about how the photon scatters from the qubit. Then you show that, given those assumptions, if the coefficients of the photon state are randomly distributed, then applying the Born rule to the eigenvalues of the old "objective state" (density operator) of the qubit, gives the probabilities for what the "dominant eigenstate" of ... (read more)