Forecasters vary on at least three dimensions:
- accuracy- as measured in (e.g.) average brier score over time (brier score is a measure of error where if you think (say) p is 0.7 likely and p turns out to be true, then your brier score on this forecast is (1 - 0.7)^2).
- calibration - how close are they to perfect calibration where for any x, if they assign a probability of x% to a given statement, in x% of cases, they are right?
- reliability - how much evidence does a given forecast of yours provide for the proposition in question being true? I think of this as "for a given confidence level c, whats the bayesfactor P(you say the probability of x is c|x)/P(you say the probability of x is c|not-x)?"
I wonder how these three properties relate to each other.
(A) Assume that you are perfectly calibrated at 90% and you say "It will rain today with 90% probability" - how should I update on your claim given I know your perfect calibration? My first intuition is that, given your perfect calibration,
P(you say rain with 90%|rain) is 90% and P(you say rain with 90%| no rain) is 10% likely. But that doesn't follow from the fact that you are perfectly calibrated, does it? Does your calibration have any bearing at all on your reliability (apart from the fact that both positively correlate with forecasting competence)? If it doesn't - why do we care about being calibrated?
(B) How does accuracy relate to reliability? Can infer something about your reliability from knowing your over-time brier score?
By no means an expert, but I think point estimates of probability miss a lot of relevant information that is captured by confidence/credibility intervals and distributions, like the point estimate's reliability. In general it probably pays to think about forecasting not as something new and unique humans do, but in terms of predictions made, say, in physics, where people calculate probability distributions and confidence intervals for particle masses, cosmological constant value, element abundance on exoplanets etc.
TL;DR: this community tends to reinvent the wheel a lot.