Apologies for the rather mathematical nature of this post, but it seems to have some implications for topics relevant to LW. Prior to posting I looked for literature on this but was unable to find any; pointers would be appreciated.
In short, my question is: How can we prove that any simulation of a problem really simulates the problem?
I want to demonstrate that this is not as obvious as it may seem by using the example of Newcomb's Problem. The issue here is of course Omega's omniscience. If we construct a simulation with the rules (payoffs) of Newcomb, an Omega that is always right, and an interface for the agent to interact with the simulation, will that be enough?
Let's say we simulate Omega's prediction by a coin toss and repeat the simulation (without payoffs) until the coin toss matches the agent's decision. This seems to adhere to all specifications of Newcomb and is (if the coin toss is hidden) in fact indistinguishable from it from the agent's perspective. However, if the agent knows how the simulation works, a CDT agent will one-box, while it is assumed that the same agent would two-box in 'real' Newcomb. Not telling the agent how the simulation works is never a solution, so this simulation appears to not actually simulate Newcomb.
Pointing out differences is of course far easier than proving that none exist. Assuming there's a problem we have no idea which decisions agents would make, and we want to build a real-world simulation to find out exactly that. How can we prove that this simulation really simulates the problem?
(Edit: Apparently it wasn't apparent that this is about problems in terms of game theory and decision theory. Newcomb, Prisoner's Dilemma, Iterated Prisoner's Dilemma, Monty Hall, Sleeping Beauty, Two Envelopes, that sort of stuff. Should be clear now.)
The agent in Newcomb's problem needs to know that Omega's prediction is caused by the same factors as his actual decision. The agent does not need to know any more detail than that, but does need to know at least that much. If there were no such causal path between prediction and decision then Omega would be unable to make a reliable prediction. When there is correlation, there must, somewhere, be causation (though not necessarily in the same place as the correlation).
If the agent believes that Omega is just pretending to be able to make that prediction, but really tossed a coin, and intends only publicising the cases where the agent's decision happened to be the same, then the agent has no reason to one-box.
If the agent believes Omega's story, but Omega is really tossing a coin and engaging in selective reporting, then the agent's decision may be correct on the basis of his belief, but wrong relative to the truth. Such is life.
To simulate Newcomb's problem with a real agent, you have the problem of convincing the agent you can predict his decision, even though in fact you can't.
I only used Newcomb as an example to show that determining whether a simulation actually simulates a problem isn't trivial. The issue here is not finding particular simulations for Newcomb or other problems, but the general concept of correctly linking problems to simulations. As I said, it's a rather mathematical issue. Your last statement seems the most relevant one to me:
Can we generalize this to m... (read more)