The doomsday argument says I have only a 10% chance of being within the first 10% of humans ever born, which gives nonzero information about when humanity will end. The argument has some problems with the choice of reference class; my favorite formulation (invented by me, I'm not sure if it's well-known) is to use the recursive reference class of "all people who are considering the doomsday argument with regard to humanity". But this is not the issue I want to discuss right now.
Imagine your prior says the universe can contain 10, 1000 or 1000000 humans, with probability arbitrarily assigned to these three options. Then you learn that you're the 50th human ever born. As far as I can understand, after receiving this information you're certain to be among the first 10% of humans ever born, because it's true in every possible universe where you receive such information. Also learning your index doesn't seem to tell you very much about the date of the doomsday: it doesn't change the relative probabilities of doomsday dates that are consistent with your existence. (This last sentence is true for any prior, not just the one I gave.) Is there something I'm missing?
This is doubtless a frequentist approach, which perhaps isn't allowed, but I asked myself, how should an observer update on the information that civilization has existed up until that time, if observers collectively wanted to minimize their total error.
Suppose that a civilization lasts T years, and I assume that observations are uniformly distributed over the T years. (This would mean, for example, that the civilization at each time point in the interval (0,T) makes a collective, single vote.) Given only the information that civilization has lasted x years (clearly, 0<=x<=T), the observer would guess that civilization will actually last some multiple of x years: cx. Should they choose a c that is low (close to 1) or high, etc?
The optimal value of c can be calculated as exactly sqrt(2).
By taking the minimum of the function that measures the total error, the integral of the error (error=|T-cx|) integrated from T to 0.
You would get a different c if you assume that growth is exponential and weight by the number of observers. It would be closer to 1.
Also, implicit is the assumption that T is uniformly distributed over an unknown range. Instead, T might be normally distributed with an unknown mean or extremely tight-tailed. These would also affect c, but by moving c further from 1 I think.
tldr;
If you observe that civilization is age X units, you should update that it will last another 0.4 X units.