I am confused.
Suppose you are in charge of estimating the risk of catastrophic failure of the Space Shuttle. From engineers, component tests, and guesswork, you come to the conclusion that any given launch is about 1% likely to fail. On the strength of this you launch the Shuttle, and it does not blow up. Now, with this new information, what is your new probability estimate? I write down
P(failure next time | we observe one successful launch) = P (we observe one successful launch | failure next time) * P(failure) / P(observe one success)
or
P(FNT|1S) = P(1S|FNT)*P(F)/P(S)
We have P(F) = 1-P(S) = 0.03. Presumably your chances of success this time are not affected by the next one being a failure, so P(1S|FNT) is just P(S) = 0.97. So the two 97% chances cancel, and I'm left with the same estimate I had before, 3% chance of failure. Is this correct, that a successful launch does not give you new information about the chances of failure? This seems counterintuitive.
You're trying to estimate a proportion. You should read about doing Bayesian inference for proportions (for example here). If this is your first problem you might want to choose a simpler problem where the quantity you're trying to estimate is a discrete variable (that'll make the problem simpler). The particular mistake you've made is using a single value for your prior; the value I think you're trying to estimate (the proportion of shuttles that fail) is continuous so you should have a prior distribution over the real line [0,1].
Or here, even.