I am confused.
Suppose you are in charge of estimating the risk of catastrophic failure of the Space Shuttle. From engineers, component tests, and guesswork, you come to the conclusion that any given launch is about 1% likely to fail. On the strength of this you launch the Shuttle, and it does not blow up. Now, with this new information, what is your new probability estimate? I write down
P(failure next time | we observe one successful launch) = P (we observe one successful launch | failure next time) * P(failure) / P(observe one success)
or
P(FNT|1S) = P(1S|FNT)*P(F)/P(S)
We have P(F) = 1-P(S) = 0.03. Presumably your chances of success this time are not affected by the next one being a failure, so P(1S|FNT) is just P(S) = 0.97. So the two 97% chances cancel, and I'm left with the same estimate I had before, 3% chance of failure. Is this correct, that a successful launch does not give you new information about the chances of failure? This seems counterintuitive.
Right. But rather than to say that you have started with a bad prior (which you effectively did, bud hadn't noticed that you had had such a prior) I would say that the confusion stemmed from bad choice of words. You thought about frequency of failures and said probability of failure, which caused you to think that this is what has to be updated. Frequency of failures isn't a Bayesian probability, it's an objective property of the system. But once you say "probability of failure", it appears that the tested hypothesis is "next launch will fail" rather than "frequency of failures is x". "Next launch will fail" says apparently nothing about this launch, so one intuitively concludes that observing this launch is irrelevant as for that hypothesis, more so if one correctly assumes that failure next time doesn't causally influence chances for failure this time.
Of course this line of thought is wrong: both launches are instances of the same process and by observing one launch one can learn something which applies to all other launches. But it is easy to overlook if one speaks about probabilities of single event outcomes rather than a general model which includes some objective frequencies. So, before you write down the Bayes' formula, make sure what hypothesis you are testing and that you don't mix objective frequencies and subjective probabilities, even if they may be (under some conditions) the same.
(I hope I have described the thought processes correctly. I have experienced the same confusion when I was trying to figure out how Bayesian updating works for the first time.)