Cross posted from Overcoming Bias. Comments there.
***
Warning: this post is technical.
Suppose you know that there are a certain number of planets, N. You are unsure about the truth of a statement Q. If Q is true, you put a high probability on life forming on a given arbitrary planet. If Q is false, you put a low probability on this. You have a prior probability for Q. So far you have not taken into account your observation that the planet you are on has life. How do you update on this evidence, to get a posterior probability for Q? Since you don’t know which is ‘this’ planet, with respect to the model, you can’t update directly on ‘there is life on this planet’, by excluding worlds where this planet doesn’t have life. And you can’t necessarily treat ‘this’ as an arbitrary planet, since you wouldn’t have seen it if it didn’t have life.
I have an ongoing disagreement with an associate who suggests that you should take ‘this planet has life’ into account by conditioning on ‘there exists a planet with life’. That is,
P(Q|there is life on this planet) = P(Q|there exists a planet with life).
Here I shall explain my disagreement.
Nick Bostrom argues persuasively that much science would be impossible if we treated ‘I observe X’ as ‘someone observes X’. This is basically because in a big world of scientists making measurements, at some point somebody will make most mistaken measurements. So if all you know when you measure the temperature of a solution to be 15 degrees is that you are not in a world where nobody ever measures its temperature to be 15 degrees, this doesn’t tell you much about the temperature.
You can add other apparently irrelevant observations you make at the same time – e.g. that the table is blue chipboard – in order to make your total observations less likely to arise once in a given world (at its limit, this is the suggestion of FNC). However it seems implausible that you should make different inferences from taking a measurement when you can also see a detailed but irrelevant picture at the same time than those you make with limited sensory input. Also the same problem re-emerges if the universe is supposed to be larger. Given that the universe is thought to be very, very large, this is a problem. Not to mention, it seems implausible that the size of the universe should greatly affect probabilistic judgements made about entities which are close to independent from most of the universe.
So I think Bostrom’s case is good. However I’m not completely comfortable arguing from the acceptability of something that we do (science) back to the truth of the principles that justify it. So I’d like to make another case against taking ‘this planet has life’ as equivalent evidence to ‘there exists a planet with life’.
Evidence is what excludes possibilities. Seeing the sun shining is evidence against rain, because it excludes the possible worlds where the sky is grey, which include most of those where it is raining. Seeing a picture of the sun shining is not much evidence against rain, because it excludes worlds where you don’t see such a picture, which are about as likely to be rainy or sunny as those that remain are.
Receiving the evidence ‘there exists a planet with life’ means excluding all worlds where all planets are lifeless, and not excluding any other worlds. At first glance, this must be different from ‘this planet has life’. Take any possible world where some other planet has life, and this planet has no life. ‘There exists a planet with life’ doesn’t exclude that world, while ‘this planet has life’ does. Therefore they are different evidence.
At this point however, note that the planets in the model have no distinguishing characteristics. How do we even decide which planet is ‘this planet’ in another possible world? There needs to be some kind of mapping between planets in each world, saying which planet in world A corresponds to which planet in world B, etc. As far as I can tell, any mapping will do, as long as a given planet in one possible world maps to at most one planet in another possible world. This mapping is basically a definition choice.
So suppose we use a mapping where in every possible world where at least one planet has life, ‘this planet’ corresponds to one of the planets that has life. See the below image.

Squares are possible worlds, each with two planets. Pink planets have life, blue do not. Define ‘this planet’ as the circled one in each case. Learning that there is life on this planet is equal to learning that there is life on some planet.
Now learning that there exists a planet with life is the same as learning that this planet has life. Both exclude the far righthand possible world, and none of the other possible worlds. What’s more, since we can change the probability distribution we end up with, just by redefining which planets are ‘the same planet’ across worlds, indexical evidence such as ‘this planet has life’ must be horseshit.
Actually the last paragraph was false. If in every possible world which contains life, you pick one of the planets with life to be ‘this planet’, you can no longer know whether you are in ‘this planet’. From your observations alone, you could be on the other planet, which only has life when both planets do. The one that is not circled in each of the above worlds. Whichever planet you are on, you know that there exists a planet with life. But because there’s some probability of you being on the planet which only rarely has life, you have more information than that. Redefining which planet was which didn’t change that.
Perhaps a different definition of ‘this planet’ would get what my associate wants? The problem with the last was that it no longer necessarily included the planet we are on. So what about we define ‘this planet’ to be the one you are on, plus a life-containing planet in all of the other possible worlds that contain at least one life-containing planet. A strange, half-indexical definition, but why not? One thing remains to be specified – which is ‘this’ planet when you don’t exist? Let’s say it is chosen randomly.
Now is learning that ‘this planet’ has life any different from learning that some planet has life? Yes. Now again there are cases where some planet has life, but it’s not the one you are on. This is because the definition only picks out planets with life across other possible worlds, not this one. In this one, ‘this planet’ refers to the one you are on. If you don’t exist, this planet may not have life. Even if there are other planets that do. So again, ‘this planet has life’ gives more information than ‘there exists a planet with life’.
You either have to accept that someone else might exist when you do not, or you have to define ‘yourself’ as something that always exists, in which case you no longer know whether you are ‘yourself’. Either way, changing definitions doesn’t change the evidence. Observing that you are alive tells you more than learning that ‘someone is alive’.

My response to this would be:
From 2: (now 2 layers of indirection to avoid updating on my own argument until later):
Here I stop and summarise:
Suppose (there are) N planets (called "N" in totality). Q can be true or not-true. If Q, observe life. If not-Q, observe no-life. <-: already falsified by evidence. :-> if not-Q, "small finite number compared to N" of planets with life. :: Q cannot be false. Question: Can Q be P=1? Yes, as P=1 is just a logical, technical criterion and not necessarily relevant to a real world except in theory. Can Q be logically true? No, as that excludes the nuance of "how many planets out of N have life" which is the entire interesting part of the question. -> using "there is actually a difference between 'logical certainty' and 'P=1'.".
So the question so far is to construct a prior CDF based on the previously quoted text. Since N is a finite, specific number of planets, this could be done by exhaustively checking each case, in each case for each N. Suppose N=1. Done.
Suppose N=2. Then n (number of planets) = either 1 or 2. Is it 1? yes. Is it 2? life has been observed on comets. Therefore likely to be 2, if N were to be "much larger" than 1. If N=2 then either the comets came from the 1 other planet or from the 1 planet already with life. A priori much more likely that N=1 in this case, given that life is observed to be a surprisingly rare phenomenon, however there must be some probability mass assigned to the idea that n=N=2, given that our previously described reasoning has some relevance to the question we are actually interested in, which is "N = some very large number roughly about the size of the number of planets we observe to be probably there in the universe or something".
Suppose N is some large number compared to 1, 2, etc. Either N is prime or it can be divided by some factors up to (sqrt N). Either way, it can be "added up to" by using only 1, 2, 3, and 4, or some other small subset of numbers less than 10 like 6, 5, 2. ::<- implicitly defines subtraction.:: <->. If division is also allowed as an operation, then N either has a prime factorisation which can be calculated fairly straightforwardly or is prime.
If N is prime, then we should only use linear operations to obtain our probability distribution. If it is not prime, we may use nonlinear methods in addition. Either way, we can use both, and concurrently run the calculation to see whether some specific N is prime. Or we may choose a large N directly which has been already shown to be prime or not prime. Suppose N is 10,000,000,000,000,000,000,000,000. This is known to be not prime, and would likely be considered large compared to 1, 2, etc. We may also choose N as "some prime number close to about that value" and then apply only the linear part of the logic, and this would give us a close estimate for that N, which we can then apply some form of insertion sort/expansion/contraction/interpolation using all the tools available to us in accordance with the rules of probability theory to obtain a "best estimate" for the prime N which doesn't require much extra calculation, and is likely good enough for cosmological estimates. See https://xkcd.com/2205/. Remember that after obtaining this prior we can "just multiply" to update it based on further observations. This is probably why it's a good idea to get the prior from a very small number of observations if possible.
...
Now that we have worked out how we would calculate an example, it is not necessary to do so yet as this can be done after (and indeed, should be) writing down the full response, because it may turn out not to be necessary to answer the actual, quoted question which this article is about.
So what is "the rough shape" of our prior, given the response I myself have written so far?
Well, if the stated observations:
are taken as a starting point, then we can make a rough prior for Q, which is roughly that "n is small compared to N." This is equivalent to saying that "life is unlikely" as there are much more big numbers than small numbers, and on a uniform distribution n would likely be not small (ie, within a few orders of magnitude) compared to N. "What does the evidence say about whether life is unlikely?" is now a relevant question for our larger question of the informativeness of the original question about Q.
Separately, N may not be finite, and we are interested in the actual question of the article in this case too. So we're not actually that interested in the previous stuff, but as a prior we have that "life is unlikely even for infinite N" but that would still mean that for infinite N there would be an infinity of life.
It seems more important, by the numbers, to consider first the case of infinite N, which I will do in a reply.
Now, to restate the original "thing" we were trying to honestly say we had a prior for:
Does this work, given this and our response?
We do not actually have a prior for Q, but we have a rough prior for a highly related question Q', which can be transformed likely fairly easil
... (read more)