A common mistake people make with utility functions is taking individual utility numbers as meaningful, and performing operations such as adding them or doubling them. But utility functions are only defined up to positive affine transformation.
Talking about "utils" seems like it would encourage this sort of mistake; it makes it sound like some sort of quantity of stuff, that can be meaningfully added, scaled, etc. Now the use of a unit -- "utils" -- instead of bare real numbers does remind us that the scale we've picked is arbitrary, but it doesn't remind us that the zero we've picked is also arbitrary, and encourages such illegal operations as addition and scaling. It suggests linear, not affine.
But there is a common everyday quantity which we ordinarily measure with an affine scale, and that's temperature. Now, in fact, temperatures really do have an absolute zero (and if you make sufficient use natural units, they have an absolute scale, as well), but generally we measure temperature with scales that were invented before that fact was recognized. And so while we may have Kelvins, we have "degrees Fahrenheit" or "degrees Celsius".
If you've used these scales long enough you recognize that it is meaningless to e.g. add things measured on these scales, or to multiply them by scalars. So I think it would be a helpful cognitive reminder to say something like "degrees utility" instead of "utils", to suggest an affine scale like we use for temperature, rather than a linear scale like we use for length or time or mass.
The analogy isn't entirely perfect, because as I've mentioned above, temperature actually can be measured on a linear scale (and with sufficient use of natural units, an absolute scale); but the point is just to prompt the right style of thinking, and in everyday life we usually think of temperature as an (ordered) affine thing, like utility.
As such I recommend saying "degrees utility" instead of "utils". If there is some other familiar quantity we also tend to use an affine scale for, perhaps an analogy with that could be used instead or as well.
I am reluctant to accept a terminology change to something that is broken, even if the current terminology is broken as well. Accepting such incomplete solutions serves to reduce the incentive to come up with an actual workable fix to the problem and gives people the illusion that they have something that is solved.
"Degrees Utility" is not analogous to "Degrees Fahrenheit" or "Degrees Celsius". When 34 degrees Fahrenheit is compared to 54 degrees Fahrenheit it is correct (and meaningful) to say that the latter is hotter than the former. When, using your terminology, "34 degrees Utility" is compared to "54 degrees Utility" the result is not meaningful even though it sometimes should be. For example when looking at a payoff matrix for a game involving agent A and agent B the 54 degrees Utility that B gets in some outcome cannot be compared meaningfully to "34 degrees Utility" that A gets in an outcome but can be compared to the "34 degrees Utility" that B gets in a different outcome (with the result "better"). That's just sloppy expression with the illusion of rigour.
"34 DegreesUtility" would be viable but that sort of parametrised nomenclature is not sufficiently high status to reliably enforce as a standard just now.
...actually, now that I think about it some more, I agree that there is something to your line of thinking; I'm just not certain it leads to the conclusion you suggest.
The problem is that we don't have any way of talking about this that intuitively prompts how it actually works, and "degrees utility" is problematic because it suggests it accounts for all the problems. OK. However, the thing is, so does "utils". I mean, it's possible that people see that and know to tread carefully; I don't have any data here. I just feel like I've s... (read more)