Lately I've resolved to try harder at teaching myself math so I have a better shot at the international olympiad (IMO). These basically involve getting, say, three really hard math problems and trying your best to solve them within 5 hours.
My current state:
- I have worked through a general math problem-solving guide (Art and Craft of Problem-Solving), a general math olympiad guide (A Primer for Mathematics Competitions) and practice problems.
- I've added all problems and solutions and theorems and techniques into an Anki deck. When reviewing, I do not re-solve the problem, I only try to remember any key insights and outline the solution method.
- I am doing n-back, ~20 sessions (1 hour) daily, in an attempt to increase my general intelligence (my IQ is ~125, sd 15).
- I am working almost permanently; akrasia is not much of a problem.
- I am not _yet_ at the level of IMO medallists.
What does the intrumental-rationality skill of LWers have to say about this? What recommendations do you guys have for improving problem-solving ability, in general and specifically for olympiad-type environments? Specifically,
- How should I spread my time between n-backing, solving problems, and learning more potentially-useful math?
- Should I take any nootropics? I am currently looking to procure some fish oil (I don't consume any normally) and perhaps a racetam. I have been experimenting with cycling caffeine weekends on, weekdays off (to prevent tolerance being developed), with moderate success (Monday withdrawal really sucks, but Saturday is awesome).
- Should I add the problems to Anki? It takes time to create the cards and review them; is that time better spent doing more problems?
(Take with a grain of salt, I'm far from IMO level and never seriously trained for math contests.)
After solving any given problem, reflect on general methods that would allow solving a bigger class of problems including the one you've cracked. For any miracle of intuitively seeing a solution method (or noticing some useful property), look for ways of more systematically inferring a workable method that don't rely on miracles. Don't consider a problem solved just because you solved it (i.e. used your intuition), you should also figure out how it could be solved (i.e. know in more detail how your intuition figured it out, or know a method other than the unknown one used by your intuition).
I expect this can get one past some limitations of raw ability that wouldn't otherwise be lifted using just problem-solving practice, but I'm not sure how far.
This is a reasonable portion of what I did for math olympiads; the other parts were doing lots and lots of problems and acquiring a solid technical background.
One thing I worked on in particular is formulating good solution strategies, where I could see the general steps of a solution (or the steps of a good approach) without having to actually fill in all the details of the approach; this involves having good heuristics for figuring out what is true/false and what can be proved without too much effort (and then deferring the actual proof until later when ... (read more)