It is widely understood that statistical correlation between two variables ≠ causation. But despite this admonition, people are routinely overconfident in claiming correlations to support particular causal interpretations and are surprised by the results of randomized experiments, suggesting that they are biased & systematically underestimating the prevalence of confounds/common-causation. I speculate that in realistic causal networks or DAGs, the number of possible correlations grows faster than the number of possible causal relationships. So confounds really are that common, and since people do not think in DAGs, the imbalance also explains overconfidence.
Full article: http://www.gwern.net/Causality
I'm pointing out that your list isn't complete, and not considering this possibility when we see a correlation is irresponsible. There are a lot of apparent correlations, and your three possibilities provide no means to reject false positives.
It ends with “etc.” for Pete's sake!