I often see the belief that infinity is a quantity, when I think it's a quality. This post introduces two qualitative notions on a field where people are likely to have a good quantitative understanding in order to show how the qualitative understanding isn't that satifying.
Assume natural numbers and then we will extend them with two new numbers. They will be suggestively named "inpositivity" and "positivity".
What these numbers are is characterised by rules involving them (I will not differentiate between axiom and theorem).
For any number a and b if a>b then b-a=inpositivity
inpositivy-a=inpositivity
inpositivity+a is undefined
inpositivity-inpositivity=inpositivity
inpositivity*a=inpositivity
inpositity*inpositivity=positivity
positivity+positivity=positivity
positivity*positivity=positivity
0*positivity=0
0*inpositivity=0
positivity+inpositivity is undefined
positivity - inpositivity = positivity
Call the system defined as the "Dulled natural numbers". Now if you compare this system with integers you might see that the qualities "positive" and "negative" have a close correspondence with these two extra dulled numbers. And this is the intention of the construction. We could consider the dulled system in it's own right. Or we can see it as talking coarsely about the more detailed world of integers.
Note that for expressions explicitly listed as undefined we can find very easily reasons why they don't have locked-in results. For example 5-3=2 and 5-7=-2 their "coarsement" analgoues would be positivity-positivity=positivity and positivity-posititivy=inpositivity. Likewise a rule like "positivity-positivity=0" could take "detailment" forms like "5-7=0" which would be clearly false.
When we are talking about infinities one of the systems we might talk about is the extended real line. It's a similar kind of system in that we add two numbers to the usual real numbers. When there we have expressions like "+infinity - +infinity" being undefined we might not be equiped to have a "detailment" argument to cast it into another system why it is so. And after all if it is good system it must be fine at it's own merits.
But when people read statements involving those kind of infinite numbers they might be reading it as "THE infinity + THE infinity". But there is the option of reading it "AN infinity + AN infinity". In the same way you do not read "THE positivity + THE positivity" but "A positive number + A positive number". When you have expressed that a number is positive you have not yet said how big it is. Likewise when you say that an amount is infinite you have expressed a quality that limits some magnitudes to be out of question but you have not actually specified its magnitude.
As an aside: boolean multiplication and addition of 1*1=1 and 1+1=1 seems to be suspiciuosly similar to positivity multiplication and addition. It might be that boolean algebra is the dulled natural numbers without the positive numbers and inpositivity. Boolean 1 does not translate to natural number 1 and this would be true even if we didn't know about positivity. We could also form other "dulled" number systems such as dulled reals or dulled rationals. Making dulling into an operation that could be applied to arbitrary number systems could be interesting but I don't know the language in which a mathematician could read it as a stand-alone idea.
So your intent here is to diagnose the conceptual confusion that many people have with respect to infinity yes? And your thesis is that: people are confused about infinity because they think it has a unique referant while in fact positive and negative infinity are different?
I think you are on to something but it's a little more complicated and that's what gets people are confused. The problem is that in fact there are a number of different concepts we use the term infinity to describe which is why it so super confusing (and I bet there are more).
1. Virtual Points that are above or below all other values in an ordered ring (or their positive component) which we use as shorthand to write limits and reason about how they behave.
2. The background idea of the infinite as meaning something that is beyond all finite values (hence why a point at infinity is infinite).
3. The cardinality of sets which are bijectable with a proper subset of themselves, i.e., infinite. Even here there is an ambiguity between the sets with a given cardinality and the cardinal itself.
4. The notion of absolute mathematical infinity. If this concept makes sense it does have a single reference which is taken to be 'larger' (usually in the sense of cardinality) than any possible cardinal, i.e. the height of the true hierarchy of sets.
5. The metaphorical or theological notion of infinity as a way of describing something beyond human comprehension and/or without limits.
The fact that some of these notions do uniquely refer while others don't is a part of the problem.
> people are confused about infinity because they think it has a unique referant while in fact positive and negative infinity are different?
No, that is a different point. The point is that positive infinity would be better treated as multiple different values and trying to mesh them all into one quantity leads to trouble. We differentiate between 2,4,6 and don't use an umbrella term "a lot". Should you do so you could run into trouble with claims like "a lot is divisible by 4" (proof following 4/4=1 affirms, proof following 6%4... (read more)