This article should really be called "Patching the argumentative flaw in the Sequences created by the Quantum Physics Sequence".
There's only one big thing wrong with that Sequence: the central factual claim is wrong. I don't mean the claim that the Many Worlds interpretation is correct; I mean the claim that the Many Worlds interpretation is obviously correct. I don't agree with the ontological claim either, but I especially don't agree with the epistemological claim. It's a strawman which reduces the quantum debate to Everett versus Bohr - well, it's not really Bohr, since Bohr didn't believe wavefunctions were physical entities. Everett versus Collapse, then.
I've complained about this from the beginning, simply because I've also studied the topic and profoundly disagree with Eliezer's assessment. What I would like to see discussed on this occasion is not the physics, but rather how to patch the arguments in the Sequences that depend on this wrong sub-argument. To my eyes, this is a highly visible flaw, but it's not a deep one. It's a detail, a bug. Surely it affects nothing of substance.
However, before I proceed, I'd better back up my criticism. So: consider the existence of single-world retrocausal interpretations of quantum mechanics, such as John Cramer's transactional interpretation, which is descended from Wheeler-Feynman absorber theory. There are no superpositions, only causal chains running forward in time and backward in time. The calculus of complex-valued probability amplitudes is supposed to arise from this.
The existence of the retrocausal tradition already shows that the debate has been represented incorrectly; it should at least be Everett versus Bohr versus Cramer. I would also argue that when you look at the details, many-worlds has no discernible edge over single-world retrocausality:
- Relativity isn't an issue for the transactional interpretation: causality forwards and causality backwards are both local, it's the existence of loops in time which create the appearance of nonlocality.
- Retrocausal interpretations don't have an exact derivation of the Born rule, but neither does many-worlds.
- Many-worlds finds hope of such a derivation in a property of the quantum formalism: the resemblance of density matrix entries to probabilities. But single-world retrocausality finds such hope too: the Born probabilities can be obtained from the product of ψ with ψ*, its complex conjugate, and ψ* is the time reverse of ψ.
- Loops in time just fundamentally bug some people, but splitting worlds have the same effect on others.
I am not especially an advocate of retrocausal interpretations. They are among the possibilities; they deserve consideration and they get it. Retrocausality may or may not be an element of the real explanation of why quantum mechanics works. Progress towards the discovery of the truth requires exploration on many fronts, that's happening, we'll get there eventually. I have focused on retrocausal interpretations here just because they offer the clearest evidence that the big picture offered by the Sequence is wrong.
It's hopeless to suggest rewriting the Sequence, I don't think that would be a good use of anyone's time. But what I would like to have, is a clear idea of the role that "the winner is ... Many Worlds!" plays in the overall flow of argument, in the great meta-sequence that is Less Wrong's foundational text; and I would also like to have a clear idea of how to patch the argument, so that it routes around this flaw.
In the wiki, it states that "Cleaning up the old confusion about QM is used to introduce basic issues in rationality (such as the technical version of Occam's Razor), epistemology, reductionism, naturalism, and philosophy of science." So there we have it - a synopsis of the function that this Sequence is supposed to perform. Perhaps we need a working group that will identify each of the individual arguments, and come up with a substitute for each one.
Modalism has its place in a discussion of the options. But in fact my call for "debugging" was not aimed at reforming the account of QM provided by the Sequence. The arguments about QM serve to illustrate various general points - e.g. "think like reality" - and I'm saying that a functional substitute for all that should be constructed, or at least outlined. We should at least have an idea of what could take the Sequence's place in the flow of argument, if one were to remove it.
Some thoughts on modal interpretations:
The concept of a modal interpretation is even vaguer in its implications than many-worlds and retrocausal interpretations. The only unifying concept seems to be that other worlds exist in the discourse, but they are purely counterfactual and play no role in explaining anything that happens in the one actual world.
There are various theorems ("Hardy theorems") proving that an ontological theory can't assign definite values to all observables in all quantum states, such that all QM expectations are satisfied simultaneously. "Antirealists" like to use this as evidence that you can't make an objective theory that accounts for QM. But you never perform all possible measurements simultaneously; all that matters is that what the theory says about position when position is measured matches what QM says, and the same for other observables. At other times, position can be doing whatever is required by the logic of the new theory, it can even be absent ontologically.
The modalists have brought all this to the fore and they even have a few technical insights about the construction of a full proper theory, but so far as I can see, these insights aren't comprehensive enough to single out an ontologically distinctive class of theory, compared to many-worlds or retrocausality. Bohmian mechanics, especially in its wavefunction-less "nomological" form, is a modal interpretation in the sense that, e.g. Bohmian momentum behaves like quantum momentum only when a momentum measurement is occurring. (The Bohmian mechanics of the measurement interaction forces it to behave appropriately.)
You could even argue that many worlds is modal! - in the technical sense that a "world" or "branch" which is an eigenstate of some observable will not provide an associated eigenvalue for a complementary observable.
I don't agree that the concept of a modal interpretation is vague. The basic concept is that a quantum system can have a physical property with a definite value without its wavefunction necessarily having to be in an eigenstate of the correspon... (read more)