This article should really be called "Patching the argumentative flaw in the Sequences created by the Quantum Physics Sequence".
There's only one big thing wrong with that Sequence: the central factual claim is wrong. I don't mean the claim that the Many Worlds interpretation is correct; I mean the claim that the Many Worlds interpretation is obviously correct. I don't agree with the ontological claim either, but I especially don't agree with the epistemological claim. It's a strawman which reduces the quantum debate to Everett versus Bohr - well, it's not really Bohr, since Bohr didn't believe wavefunctions were physical entities. Everett versus Collapse, then.
I've complained about this from the beginning, simply because I've also studied the topic and profoundly disagree with Eliezer's assessment. What I would like to see discussed on this occasion is not the physics, but rather how to patch the arguments in the Sequences that depend on this wrong sub-argument. To my eyes, this is a highly visible flaw, but it's not a deep one. It's a detail, a bug. Surely it affects nothing of substance.
However, before I proceed, I'd better back up my criticism. So: consider the existence of single-world retrocausal interpretations of quantum mechanics, such as John Cramer's transactional interpretation, which is descended from Wheeler-Feynman absorber theory. There are no superpositions, only causal chains running forward in time and backward in time. The calculus of complex-valued probability amplitudes is supposed to arise from this.
The existence of the retrocausal tradition already shows that the debate has been represented incorrectly; it should at least be Everett versus Bohr versus Cramer. I would also argue that when you look at the details, many-worlds has no discernible edge over single-world retrocausality:
- Relativity isn't an issue for the transactional interpretation: causality forwards and causality backwards are both local, it's the existence of loops in time which create the appearance of nonlocality.
- Retrocausal interpretations don't have an exact derivation of the Born rule, but neither does many-worlds.
- Many-worlds finds hope of such a derivation in a property of the quantum formalism: the resemblance of density matrix entries to probabilities. But single-world retrocausality finds such hope too: the Born probabilities can be obtained from the product of ψ with ψ*, its complex conjugate, and ψ* is the time reverse of ψ.
- Loops in time just fundamentally bug some people, but splitting worlds have the same effect on others.
I am not especially an advocate of retrocausal interpretations. They are among the possibilities; they deserve consideration and they get it. Retrocausality may or may not be an element of the real explanation of why quantum mechanics works. Progress towards the discovery of the truth requires exploration on many fronts, that's happening, we'll get there eventually. I have focused on retrocausal interpretations here just because they offer the clearest evidence that the big picture offered by the Sequence is wrong.
It's hopeless to suggest rewriting the Sequence, I don't think that would be a good use of anyone's time. But what I would like to have, is a clear idea of the role that "the winner is ... Many Worlds!" plays in the overall flow of argument, in the great meta-sequence that is Less Wrong's foundational text; and I would also like to have a clear idea of how to patch the argument, so that it routes around this flaw.
In the wiki, it states that "Cleaning up the old confusion about QM is used to introduce basic issues in rationality (such as the technical version of Occam's Razor), epistemology, reductionism, naturalism, and philosophy of science." So there we have it - a synopsis of the function that this Sequence is supposed to perform. Perhaps we need a working group that will identify each of the individual arguments, and come up with a substitute for each one.
When you describe a state, you need to choose a method of describing it, yes. But you can choose to describe it in any frame you like, and you can transform from one such description to another in a different frame. This is an artifact of the descriptions, not the thing in itself.
Like, you have a covariant quantity. You can do all sorts of symbolic math with it and it's totally relativistic. But then you want to do a calculation. You're going to have to pick a frame so you can work with actual numbers. These numbers are not vectors or tensors - they're scalars. They themselves do not obey the transformation laws of the entities they represent.
BUT that doesn't mean that using your description involves invoking a preferred frame. You know how to turn that description into a description in any other frame you like, and if you do, the results come out the same.
So, the time-slicing method is perfectly legit. In principle, you could use any mutually-time-like-separated slice, but it's usually inconvenient to do so. (edit: I meant, 'you could use any arbitrary mutually-SPACE-like-separated curve, but it's usually inconvenient to pick anything more complicated than strictly necessary')
I've made a sketch to illustrate the simplest version of the problem.
Horizontal direction is spacelike, vertical direction is timelike. On the left we have a classically relativistic theory. Everything reduces to properties localized at individual space-time points (the blue dots), so there's no significance to a change of slicing (black vs pink), you're just grouping and re-grouping the dots differently.
On the right we have a quantum theory. There's a quantum state on each slice. A red circle around two dots indicates entanglement. How can we apply rela... (read more)