Paul Almond's site has many philosophically deep articles on theoretical rationality along LessWrongish assumptions, including but not limited to some great atheology, an attempt to solve the problem of arbitrary UTM choice, a possible anthropic explanation why space is 3D, a thorough defense of Occam's Razor, a lot of AI theory that I haven't tried to understand, and an attempt to explain what it means for minds to be implemented (related in approach to this and this).
"As long as the simulations are identical and interact identically (from the simulation's point of view) with the external world, I don't think the above question is meaningful. A mind doesn't have a geographical location, only implementations of it embedded in a coordinate space do. So A, B, and C are not disjoint possibilities, which means probability mass isn't split between them."
I dealt with this objection in the second article of the series. It would be easy to say that there are two simulations, in which slightly different things are going to happen. For example, we could have one simulation in which you are going to see a red ball when you open a box and one where you are going to see a blue ball. We could have lots of computers running the red ball situation and then combine them and discuss how this affects probability (if at all).
"The more redundancy in a particular implementation of a version you, then the more likely it is that that implementation is causing your experiences."
Does this mean that if we had a billion identical simulations of you in a VR where you were about to see a red ball and one (different) simulation of you in a VR where you are about to see a blue ball, and all these were running on separate computers, and you did not know which situation you were in, you would not think it more likely you were going to see a red ball? (and I know a common answer here is that it is still 50/50 - that copies don't count - which I can answer if you say that and which is addressed in the second article - I am just curious what you would say about that.)
" see this the other way around. The more redundancy in a particular implementation, the more encodings of your own experiences you will expect to find embedded within your accessible reality, assuming you have causal access to the implementation-space. If you are causally disconnected from your implementation (e.g., run on hypothetical tamper-proof hardware without access to I/O), do you exist with measure zero? If you share your virtual environment with millions of other simulated minds with whom you can interact, do they all still exist with measure zero?"
I am not making any suggestion that there is any connection between measure, redundancy and whether or not you are connected to I/O. Whether you are connected to I/O does not interest me much. However, some particularly low measure situations may be hard to connect to I/O if they are associated with very extreme interpretations.
While this is also a valid and interesting scenario to consider, I don't think it "deals with the objection". The idea that "which computer am I running on?" is a meaningful question for someone whose experiences have multiple encodings in an environment seems pretty central to the discussion.
... (read more)