This question exists in the awkward space between "things undergrads google for homework" and "things on the cutting edge," so google isn't being super helpful.
I have a number I want a computer to estimate. Right now I have two regression models and an insider methodology. The former can be used to create two normal curves. The latter creates a point estimate only, but I can back into a confidence interval/normal curve with an acceptable amount of arbitrary hand-waving. If necessary, this could be conceived of as a prior.
How can I automatically weight the three curves into a single point estimate? I vaguely remember something from an econometrics class about weighting forecasts in a way that minimized total standard error, but I tried to work the math out myself and I didn’t know how to deal with the covariances of the forecasts. Can I simply assume the forecast covariances are zero?
This seems like a good place to use Bayes’ law, but I don't know how to formally set it up.
Edit to Add: Bayesian statistics is still new to me, so forgive me for being a bit dense. Here's my understanding of the methodology right now.
What exactly is D in this scenario?
This makes sense. Using Bayes rule to develop the weights was the (/a) missing link for me. I was trying to do it all conditional on the possible outcomes.
Correct me if I'm wrong, but there should be a different weight between the models at different parts of the dependent variable? When the dependent variable is near its mean, the regressions will have narrower forecast distributions and so less weight should go to the insider methodology.
This particular method doesn't do that. Think of the weight for a given model as the probability that the model is 'true.'
I think you can make the weights depend on the dependent variable by specifying the prior weights conditional on the dependent variable. For example, if your dependent variable, x, is continous, you might set P(M1|x)=P(M2|x)=logit(x)/2 and P(M3|x)=1-logit(x). The key would be choosing appropriate functions of x that reflect your actual prior knowledge.
On the other hand, there's probably a method that automatically takes into account each model's prediction error as a function of the dependent variable(s), but I'm not aware of it.