This essay claims to refute a popularized understanding of Occam's Razor that I myself adhere to. It is confusing me, since I hold this belief at a very deep level that it's difficult for me to examine. Does anyone see any problems in its argument, or does it seem compelling? I specifically feel as though it might be summarizing the relevant Machine Learning research badly, but I'm not very familiar with the field. It also might be failing to give any credit to simplicity as a general heuristic when simplicity succeeds in a specific field, and it's unclear whether such credit would be justified. Finally, my intuition is that situations in nature where there is a steady bias towards growing complexity are more common than the author claims, and that such tendencies are stronger for longer. However, for all of this, I have no clear evidence to back up the ideas in my head, just vague notions that are difficult to examine. I'd appreciate someone else's perspective on this, as mine seems to be distorted.
Essay: http://bruce.edmonds.name/sinti/
You can't get to the outside. No matter what perspective you are indirectly looking from, you are still ultimately looking from your own perspective. (True objectivity is an illusion - it amounts to you imagining you have stepped outside of yourself.) This means that, for any given phenomenon you observe, you are going to have to encode that phenomenon into your own internal modeling language first to understand it, and you will therefore perceive some lower bound on complexity for the expression of that phenomenon. But that complexity, while it seems intrinsic to the phenomenon, is in fact intrinsic to your relationship to the phenomenon, and your ability to encode it into your own internal modeling language. It's a magic trick played on us by our own cognitive limitations.
Senses and data input mechanisms are relationships. The observer and the object are related by the act of observation. You are looking at two systems, the observer and the object, and claiming that the observer's difficulty in building a map of the object is a consequence of something intrinsic to the object, but you forget that you are part of this system, too, and your own relationship to the object requires you, too, to build a map of it. You therefore can't use this as an argument to prove that this difficulty of mapping that object is intrinsic to the object, rather than to the relationship of observation.
For any given phenomenon A, I can make up a language L1 where A corresponds to a primitive element in that language. Therefore, the minimum description length for A is 1 in L1. Now imagine another language, L2, for which A has a long description length in L2. The invariance theorem for Kolmogorov complexity, which I believe is what you are basing your intuition on, can be misinterpreted as saying that there is some minimal encoding length for a given phenomenon regardless of language. This is not what that theorem is actually saying, though. What it does say is that the difficulty of encoding phenomenon A in L2 is at most equal to the difficulty of encoding A in L1 and then encoding L1 in L2. In other words, given that A has a minimum description length of 1 in L1, but a very long description length in L2, we can be certain that L1 also has a long description length in L2. In terms of conceptual distance, all the invariance theorem says is that if L1 is close to A, then it must be far from L2, because L2 is far from A. It's just the triangle inequality, in another guise. (Admittedly, conceptual distance does not have an important property we typically expect of distance measures, that the distance from A to B is the same as the distance from B to A, but that is irrelevant here.)