I am currently learning about the basics of decision theory, most of which is common knowledge on LW. I have a question, related to why EDT is said not to work.
Consider the following Newcomblike problem: A study shows that most people who two-box in Newcomblike problems as the following have a certain gene (and one-boxers don't have the gene). Now, Omega could put you into something like Newcomb's original problem, but instead of having run a simulation of you, Omega has only looked at your DNA: If you don't have the "two-boxing gene", Omega puts $1M into box B, otherwise box B is empty. And there is $1K in box A, as usual. Would you one-box (take only box B) or two-box (take box A and B)? Here's a causal diagram for the problem:
Since Omega does not do much other than translating your genes into money under a box, it does not seem to hurt to leave it out:
I presume that most LWers would one-box. (And as I understand it, not only CDT but also TDT would two-box, am I wrong?)
Now, how does this problem differ from the smoking lesion or Yudkowsky's (2010, p.67) chewing gum problem? Chewing Gum (or smoking) seems to be like taking box A to get at least/additional $1K, the two-boxing gene is like the CGTA gene, the illness itself (the abscess or lung cancer) is like not having $1M in box B. Here's another causal diagram, this time for the chewing gum problem:
As far as I can tell, the difference between the two problems is some additional, unstated intuition in the classic medical Newcomb problems. Maybe, the additional assumption is that the actual evidence lies in the "tickle", or that knowing and thinking about the study results causes some complications. In EDT terms: The intuition is that neither smoking nor chewing gum gives the agent additional information.
I think two-boxing in your modified Newcomb is the correct answer. In the smoking lesion, smoking is correct, so there's no contradiction.
One-boxing is correct in the classic Newcomb because your decision can "logically influence" the fact of "this person one-boxes". But your decision in the modified Newcomb can't logically influence the fact of "this person has the two-boxing gene".
Under any normal understanding of logical influence, your decision can indeed "logically influence" whether you have the gene or not. Let's say there is a 100% correlation between having the gene and the act of choosing -- everyone who chooses the one box has the one boxing gene, and everyone who chooses both boxes has the two boxing gene. Then if you choose to one box, this logically implies that you have the one boxing gene.
Or do you mean something else by "logically influence" besides logical implication?