I recently gave a two-part talk on the big picture of alignment, as I see it. The talk is not-at-all polished, but contains a lot of stuff for which I don't currently know of any good writeup. Major pieces in part one:
- Some semitechnical intuition-building for high-dimensional problem-spaces.
- Optimization compresses information "by default"
- Resources and "instrumental convergence" without any explicit reference to agents
- A frame for thinking about the alignment problem which only talks about high-dimensional problem-spaces, without reference to AI per se.
- The central challenge is to get enough bits-of-information about human values to narrow down a search-space to solutions compatible with human values.
- Details like whether an AI is a singleton, tool AI, multipolar, oracle, etc are mostly irrelevant.
- Fermi estimate: just how complex are human values?
- Coherence arguments, presented the way I think they should be done.
- Also subagents!
Note that I don't talk about timelines or takeoff scenarios; this talk is just about the technical problem of alignment.
Here's the video for part one:
Big thanks to Rob Miles for editing! Also, the video includes some good questions and discussion from Adam Shimi, Alex Flint, and Rob Miles.
Did you get around to writing a longer answer to the question, "How do humans do anything in practice if the search space is vast?" I'd be curious to see your thoughts.
My answer to this question is that:
(a) Most day-to-day problems can be solved from far away using a low-dimensional space containing natural abstractions. For example, a manager at a company can give their team verbal instructions without describing the detailed sequence of muscle movements needed.
(b) For unsolved problems in science, we get many tries at the problem. So, we can use the scientific method to design many experiments which give us enough bits to locate the solution. For example, a drug discovery team can try thousands of compounds in their search for a new drug. The drug discovery team gets to test each compound on the condition they're trying to treat - so, they can get many bits about which compounds could be effective.