I have recently become interested in the foundations of math. I am interested in tracing the fundamentals of math in a path such as: propositional logic -> first order logic -> set theory -> measure theory. Does anyone have any resources (books, webpages, pdfs etc.) they would like to recommend?
This seems like it would be a popular activity among LWers, so I thought this would be a good place to ask for advice.
My criteria (feel free to post resources which you think others who stumble across this might be interested in):
- The more basic the starting point the better: I would prefer a resource that defines propositional logic in terms of a context free grammar and an evaluation procedure (don't know if that is possible, but that's the sort of thing I am interested in) to one that just describes propositional logic in English; I would prefer a resource which builds first order logic from propositional logic + some definitions to one that just describes how first order logic works; etc.
- The fewer axioms (perhaps that's not quite the right word) the better. I prefer a resource defines describes propositional logic with just two operators (say negation and conjugation) and then builds the other operators of interest to one that defines it with 5 or 6 operators (I've seen many resources which do this).
- I expect that there are multiple ways to build math from basic building blocks. I am more interested in standard ways than than non-standard ways.
This mostly started because I was trying to learn stochastic differential equations and to a lesser extent topology. I became unsatisfied with my understanding of set theory (not sure how to answer questions like "when I construct a set, what am I iterating over?"), and to a lesser extent measure theory. When I went to get the foundations of set theory, I realized I wasn't even very familiar with first order logic, and I continued down the rabbit hole.
At the moment I am not especially interested in questions like "is this theory consistent". I am primarily interested in how one does the fundamental theories of math in a way that bottoms out, meaning I can see and enumerate the notions or procedures I am just taking for granted or defining. If propositional logic was just constructing a specific context free grammer and saying statements constructed in this manner are called 'proofs' for this grammar I think that would satisfy me (though it doesn't look like this is all logic involves). I could easily be using the phrase "foundations of math" incorrectly; please tell me if I am.
Then foundations texts are not what you're looking for. If I understand you correctly, you seem to be confused about the way sets and other basic constructs are used in normal mathematical prose, and you'd like to learn formal logic and formal proof systems, and then use this knowledge to tackle your problem.
Unfortunately, that's not a feasible way to go, because to learn metamathematics, you first have to be proficient in regular mathematics -- and even when you learn it, it won't help you in understanding standard human-friendly math texts, except insof... (read more)