I've had a bit of success with getting people to understand Bayesianism at parties and such, and I'm posting this thought experiment that I came up with to see if it can be improved or if an entirely different thought experiment would be grasped more intuitively in that context:
Say there is a jar that is filled with dice. There are two types of dice in the jar: One is an 8-sided die with the numbers 1 - 8 and the other is a trick die that has a 3 on all faces. The jar has an even distribution between the 8-sided die and the trick die. If a friend of yours grabbed a die from the jar at random and rolled it and told you that the number that landed was a 3, is it more likely that the person grabbed the 8-sided die or the trick die?
I originally came up with this idea to explain falsifiability which is why I didn't go with say the example in the better article on Bayesianism (i.e. any other number besides a 3 rolled refutes the possibility that the trick die was picked) and having a hypothesis that explains too much contradictory data, so eventually I increase the sides that the die has (like a hypothetical 50-sided die), the different types of die in the jar (100-sided, 6-sided, trick die), and different distributions of die in the jar (90% of the die are 200-sided but a 3 is rolled, etc.). Again, I've been discussing this at parties where alcohol is flowing and cognition is impaired yet people understand it, so I figure if it works there then it can be understood intuitively by many people.
The point is that the probability with die comes in as frequency (the fraction of initial phase space). Yes, sometimes nature doesn't give you die; that does not invalidate the fact that there exists probability as objective property of a physical process, as per frequentism (related to how the process maps initial phase space to final phase space); the methods employing subjectivity have to try to conform to this objective property as closely as possible (e.g. by trying to know more about how the system works). The Bayesianism is not opposed to this, unless we are to speak of some terribly broken Bayesianism.
Nope. Only the change to probability of model given the data is well defined. The probability itself isn't. You can pick arbitrary start point.
The notion of 'true answer' is frequentist....
edit: Recall that the original argument was about the trope of Bayesianism being opposed to frequentism etc. here. The point with Solomonoff induction is that once you declare something like this a source of priors, all math youll be doing should be completely identical to frequentist math (when frequencies are within turing machines fed random tape, and the math is done as in my top level post for die), just as long as you don't simply screw your math up. The point with die example was that no Bayesianist worth their salt opposes to there being a property of chaotic process, what fraction of initial phase space gets mapped to where, because there really is this property.