I've had a bit of success with getting people to understand Bayesianism at parties and such, and I'm posting this thought experiment that I came up with to see if it can be improved or if an entirely different thought experiment would be grasped more intuitively in that context:
Say there is a jar that is filled with dice. There are two types of dice in the jar: One is an 8-sided die with the numbers 1 - 8 and the other is a trick die that has a 3 on all faces. The jar has an even distribution between the 8-sided die and the trick die. If a friend of yours grabbed a die from the jar at random and rolled it and told you that the number that landed was a 3, is it more likely that the person grabbed the 8-sided die or the trick die?
I originally came up with this idea to explain falsifiability which is why I didn't go with say the example in the better article on Bayesianism (i.e. any other number besides a 3 rolled refutes the possibility that the trick die was picked) and having a hypothesis that explains too much contradictory data, so eventually I increase the sides that the die has (like a hypothetical 50-sided die), the different types of die in the jar (100-sided, 6-sided, trick die), and different distributions of die in the jar (90% of the die are 200-sided but a 3 is rolled, etc.). Again, I've been discussing this at parties where alcohol is flowing and cognition is impaired yet people understand it, so I figure if it works there then it can be understood intuitively by many people.
Good question. The second question is "just a probability" question. The first question asks you to condition on evidence ("If the randomly chosen die is rolled and comes up 3") and infer "backward" to what this tells you about the die. That's why Bayesian reasoning applies.
The reasoning goes like this: before I roll the die, the two kinds of dice are equally likely.
Then I rolled the die and saw a three. The conditional probability of this if the die is eight sided is 1/8. The conditional probability of this if the die is only 3's is 1.
The Bayesian update is to multiply out the probability of observing the evidence in the two cases:
And then renormalize:
JQuinton mentioned that he uses this to argue about falsifiability. I'd like to hear that explained more. I think the example is meant to show that a hypothesis that "can explain anything" (the 8 sided die), should lose probability if we obtain evidence that is "better explained" by the more specific hypothesis (the 3's only die).
Yes, that's correct. The thing I was trying to illustrate is that some hypotheses are more falsifiable than others. A hypothesis that can explain too much data (e.g. a 1,000 sided die) would lose pro... (read more)