I've had a bit of success with getting people to understand Bayesianism at parties and such, and I'm posting this thought experiment that I came up with to see if it can be improved or if an entirely different thought experiment would be grasped more intuitively in that context:
Say there is a jar that is filled with dice. There are two types of dice in the jar: One is an 8-sided die with the numbers 1 - 8 and the other is a trick die that has a 3 on all faces. The jar has an even distribution between the 8-sided die and the trick die. If a friend of yours grabbed a die from the jar at random and rolled it and told you that the number that landed was a 3, is it more likely that the person grabbed the 8-sided die or the trick die?
I originally came up with this idea to explain falsifiability which is why I didn't go with say the example in the better article on Bayesianism (i.e. any other number besides a 3 rolled refutes the possibility that the trick die was picked) and having a hypothesis that explains too much contradictory data, so eventually I increase the sides that the die has (like a hypothetical 50-sided die), the different types of die in the jar (100-sided, 6-sided, trick die), and different distributions of die in the jar (90% of the die are 200-sided but a 3 is rolled, etc.). Again, I've been discussing this at parties where alcohol is flowing and cognition is impaired yet people understand it, so I figure if it works there then it can be understood intuitively by many people.
Okay, there's a problem for you. Not a neat probability problem. A rectangular dice has sides with length 1cm, 1.1cm, 1.2cm, it is made of 316 stainless steel, the edges and corners are rounded to radius of 1mm , it is dropped onto 10cm thick steel plate made of same type of steel, and bounces several times. What would you do to find probabilities of landing on either side?
Clearly there is no disagreement that 1: agents may represent their uncertainty with probabilities, and 2: physical system such as dice work like a hash function of initial state, such that for perfect dice very nearly exactly 1/6 of initial state space gets transformed into either number, and with several bounces the points in the state space are transformed to different numbers are separated by less than attoradians of initial angle and attoradians per second of initial angular velocity. Effect of small deviations from symmetrical shape could be estimated from physical considerations. The outcomes of any games can be found starting from physics and counting over the states that are consistent with observations that took place; that is likewise not controversial.
Nobody respected disagrees that there exists such property of physical systems that incorporate chaos (act as a hash function, essentially); nobody respected disagrees that you can also have the degrees of beliefs that shouldn't be dutch-bookable; and a bunch of sloppy philosophers whom don't really understand either are very confused going on Bayesianism this Bayesianism that "Good Bayesian", "spoke fluent Bayesian" i kid you not. The latter sort of stuff seems to be local-ish trope.
edit: to summarize, we probably just need two different words, one for property of chaotic physical systems (or hash functions or the like), and other for degrees of belief which only have to obey certain properties between themselves to avoid dutch book or the like. The argument over whichever should be called 'probability' is pretty silly. Anything with dices in it falls straight into chaotic physical systems category.
Ignoring, temporarily, everything but the first paragraph, there are two ways I might proceed.
Acting as a frequentist, I would suppose that die rolls could be modeled as independent identically distributed draws from a multinomial distribution with fixed but unknown parameters. (The independence, and to a lesser degree the identically distributed, assumption could also be verified although this gets a bit tricky.) I would roll the die some fixed number of times (possibly determined according to a a priori calculation of statistical power) and take the MLE ... (read more)