I've had a bit of success with getting people to understand Bayesianism at parties and such, and I'm posting this thought experiment that I came up with to see if it can be improved or if an entirely different thought experiment would be grasped more intuitively in that context:
Say there is a jar that is filled with dice. There are two types of dice in the jar: One is an 8-sided die with the numbers 1 - 8 and the other is a trick die that has a 3 on all faces. The jar has an even distribution between the 8-sided die and the trick die. If a friend of yours grabbed a die from the jar at random and rolled it and told you that the number that landed was a 3, is it more likely that the person grabbed the 8-sided die or the trick die?
I originally came up with this idea to explain falsifiability which is why I didn't go with say the example in the better article on Bayesianism (i.e. any other number besides a 3 rolled refutes the possibility that the trick die was picked) and having a hypothesis that explains too much contradictory data, so eventually I increase the sides that the die has (like a hypothetical 50-sided die), the different types of die in the jar (100-sided, 6-sided, trick die), and different distributions of die in the jar (90% of the die are 200-sided but a 3 is rolled, etc.). Again, I've been discussing this at parties where alcohol is flowing and cognition is impaired yet people understand it, so I figure if it works there then it can be understood intuitively by many people.
Where do you get the idea that it's a local trope? Knowledgable and well-respected people in the field consider these foundational issues important, e.g., Brad Efron and Andrew Gelman.
You can make an argument that the philosophical details wash out as long as you're operating on a fully specified probability space. In that sense, probability is just sort of syntactic manipulation. But once you start thinking about statistics, where the events and probabilities have some semantic/denotative connection with the real world, you need to care about where the probability space you're working with comes from.
Okay, there's a problem for you. Not a neat probability problem. A rectangular dice has sides with length 1cm, 1.1cm, 1.2cm, it is made of 316 stainless steel, the edges and corners are rounded to radius of 1mm , it is dropped onto 10cm thick steel plate made of same type of steel, and bounces several times. What would you do to find probabilities of landing on either side?
Clearly there is no disagreement that 1: agents may represent their uncertainty with probabilities, and 2: physical system such as dice work like a hash function of initial state, such t... (read more)