LawrenceC

I do AI Alignment research. Currently at METR, but previously at: Redwood Research, UC Berkeley, Good Judgment Project. 

I'm also a part-time fund manager for the LTFF.

Obligatory research billboard website: https://chanlawrence.me/

Sequences

(Lawrence's) Reflections on Research
[Redwood Research] Causal Scrubbing

Wiki Contributions

Comments

Sorted by

This is really good, thanks so much for writing it! 

I've never heard of Whisper or Eleven labs until today, and I'm excited to try them out.

Yeah, this has been my experience using Grammarly pro as well. 

LawrenceCΩ562

I’m not disputing that they were trained with next token prediction log loss (if you read the tech reports they claim to do exactly this) — I’m just disputing the “on the internet” part, due to the use of synthetic data and private instruction following examples.

LawrenceCΩ350

I mean, we don't know all the details, but Qwen2 was explicitly trained on synthetic data from Qwen1.5 + "high-quality multi-task instruction data". I wouldn't be surprised if the same were true of Qwen 1.5. 

From the Qwen2 report:

Quality Enhancement The filtering algorithm has been refined with additional heuristic and modelbased methods, including the use of the Qwen models to filter out low-quality data. Moreover, these
models are utilized to synthesize high-quality pre-training data. (Page 5)
[...]
Similar to previous Qwen models, high-quality multi-task instruction data is integrated into the
Qwen2 pre-training process to enhance in-context learning and instruction-following abilities.

Similarly, Gemma 2 had its pretraining corpus filtered to remove "unwanted or unsafe utterances". From the Gemma 2 tech report:

We use the same data filtering techniques as Gemma 1. Specifically, we filter the pretraining dataset to reduce the risk of unwanted or unsafe utterances, filter out certain personal information or other sensitive data, decontaminate evaluation sets from our pre-training data mixture, and reduce the risk of recitation by minimizing the proliferation of sensitive outputs. (Page 3)
[...] 
We undertook considerable safety filtering of our pre-training data to reduce the likelihood of our
pre-trained and fine-tuned checkpoints producing harmful content. (page 10) 

LawrenceCΩ781

After thinking about it more, I think the LLaMA 1 refusals strongly suggest that this is an artefact of training data.So I've unendorsed the comment above. 

It's still worth noting that modern models generally have filtered pre-training datasets (if not wholely synthetic or explicitly instruction following datasets), and it's plausible to me that this (on top of ChatGPT contamination) is a large part of why we see much better instruction following/more eloquent refusals in modern base models. 

LawrenceCΩ220

It's worth noting that there's reasons to expect the "base models" of both Gemma2 and Qwen 1.5 to demonstrate refusals -- neither is trained on unfilted webtext. 

We don't know what 1.5 was trained on, but we do know that Qwen2's pretraining data both contains synthetic data generated by Qwen1.5, and was filtered using Qwen1.5 models. Notably, its pretraining data explicitly includes "high-quality multi-task instruction data"! From the Qwen2 report:

Quality Enhancement The filtering algorithm has been refined with additional heuristic and modelbased methods, including the use of the Qwen models to filter out low-quality data. Moreover, these
models are utilized to synthesize high-quality pre-training data. (Page 5)
[...]
Similar to previous Qwen models, high-quality multi-task instruction data is integrated into the
Qwen2 pre-training process to enhance in-context learning and instruction-following abilities.

I think this had a huge effect on Qwen2: Qwen2 is able to reliably follow both the Qwen1.5 chat template (as you note) as well as the "User: {Prompt}\n\nAssistant: " template. This is also reflected in their high standardized benchmark scores -- the "base" models do comparably to the instruction finetuned ones! In other words, Qwen2 "base" models are pretty far from traditional base models a la GPT-2 or Pythia as a result of explicit choices made when generating their pretraining data and this explains its propensity for refusals. I wouldn't be surprised if the same were true of the 1.5 models.


I think the Gemma 2 base models were not trained on synthetic data from larger models but its pretraining dataset was also filtered to remove "unwanted or unsafe utterances". From the Gemma 2 tech report:

We use the same data filtering techniques as Gemma 1. Specifically, we filter the pretraining dataset to reduce the risk of unwanted or unsafe utterances, filter out certain personal information or other sensitive data, decontaminate evaluation sets from our pre-training data mixture, and reduce the risk of recitation by minimizing the proliferation of sensitive outputs. (Page 3)
[...] 
We undertook considerable safety filtering of our pre-training data to reduce the likelihood of our
pre-trained and fine-tuned checkpoints producing harmful content. (page 10) 

My guess is this filtering explains why the model refuses, moreso than (and in addition to?) ChatGPT contamination. Once you remove all the "unsafe completions" 


I don't know what's going on with LLaMA 1, though.  

[This comment is no longer endorsed by its author]Reply1
LawrenceCΩ440

Ah, you're correct, it's from the original instructGPT release in Jan 2022:
https://openai.com/index/instruction-following/

LawrenceCΩ330

(The Anthropic paper I cited predates ChatGPT by 7 months)

LawrenceCΩ450

Pretty sure Anthropic's early assistant stuff used the word this way too: See e.g. Bai et al https://arxiv.org/abs/2204.05862

But yes, people complained about it a lot at the time

Load More