abramdemski

Sequences

Pointing at Normativity
Consequences of Logical Induction
Partial Agency
Alternate Alignment Ideas
Filtered Evidence, Filtered Arguments
CDT=EDT?
Embedded Agency
Hufflepuff Cynicism

Comments

Sorted by

I definitely agree that OpenAI would dismiss good evidence of deceptive cognition, though I personally don't find the o1 report damning, because I find the explanation that it confabulates links in the CoT because there is a difference between it's capability to retrieve links and it's ability to know links to be pretty convincing (combined with links being a case where perfect linking is far more useful than approximately linking.)

What do you mean? I don't get what you are saying is convincing.

Perhaps I should clarify my belief. 

The o1 report says the following (emphasis mine):

0.8% of o1-preview’s responses got flagged as being ‘deceptive’ [...] roughly two thirds of which appear to be intentional (0.38%), meaning that there was some evidence in the chain of thought that o1-preview was aware that the answer was incorrect [...] Intentional hallucinations primarily happen when o1-preview is asked to provide references to articles, websites, books, or similar sources that it cannot easily verify without access to internet search, causing o1-preview to make up plausible examples instead. [...] It is encouraging that, in the analysis presented below, while our monitor did find a few forms of the model knowingly presenting incorrect information to the user or omitting important information, it did not find any instances of o1-preview purposely trying to deceive the user for reasons other than satisfying the user request.

  • Is this damning in the sense of showing that o1 is a significant danger, which needs to be shut down for public safety?
    • No, I don't think so.
  • Is this damning in the sense of providing significant evidence that the technology behind o1 is dangerous? That is: does it provide reason to condemn scaling up the methodology behind o1? Does it give us significant reason to think that scaled-up o1 would create significant danger to public safety?
    • This is trickier, but I say yes. The deceptive scheming could become much more capable as this technique is scaled up. I don't think we have a strong enough understanding of why it was deceptive in the cases observed to rule out the development of more dangerous kinds of deception for similar reasons.
  • Is this damning in the sense that it shows OpenAI is dismissive of evidence of deception?
    • OpenAI should be commended for looking for deception in this way, and for publishing what they have about the deception they uncovered.
    • However, I don't buy the distinction they draw in the o1 report about not finding instances of "purposefully trying to deceive the user for reasons other than satisfying the user request". Providing fake URLs does not serve the purpose of satisfying the user request. We could argue all day about what it was "trying" to do, and whether it "understands" that fake URLs don't satisfy the user. However, I maintain that it seems at least very plausible that o1 intelligently pursues a goal other than satisfying the user request; plausibly, "provide an answer that shallowly appears to satisfy the user request, even if you know the answer to be wrong" (probably due to the RL incentive).
    • More importantly, OpenAI's overall behavior does not show concern about this deceptive behavior. It seems like they are judging deception case-by-case, rather than treating it as something to steer hard against in aggregate. This seems bad.

I think the way around this is to make multiple roll-outs per model per problem. Get n different CoTs from Shoggoth, then for each of those get k different summarizations from Face. You then have n*k final answers. Optimal values for n and k probably depend on how expensive the roll-outs are. This population of answers allows you to usefully get a feedback signal about Shoggoth's contribution vs Face's contribution.

So, how do you extract the desired credit-assignment info out of this?

(Also, how do you then use that info?)

If I have 10 students but I can only test them in pairs, I can get some information on how good individual students are by testing multiple different pairings. 

If I have just Alice and Bob, I pairing them up multiple times doesn't help so much.

The better the paraphraser, the better the anti-steganography incentive. If the paraphraser itself is easily manipulable by adversarial inputs, then you'll see some weird things like the CoT manipulating the paraphraser to get more useful cognition out of it rather than mere paraphrasing. This is undesirable.

So, I imagine that prompting a vanilla LLM would not be a great approach.

I think first you want to build a fairly good "semantic similarity score" (this shouldn't be too hard) and then you want to fine-tune an LLM to encourage high-entropy paraphrasing (reward entropy, while also heavily punishing low semantic similarity score). This is similar to @CBiddulph's idea here.

I agree that this could plausibly work with a relatively small model and therefore result in a relatively low alignment tax. However, note that my view of this whole proposal as an alignment technique requires that you try and change your RL incentive structure when you see a deceptive mismatch between what the shoggoth says and what the face says. This is a significant alignment tax.

In my view, the misaligned behavior is split across the shoggoth and face in most cases. In the case which Daniel K anticipates, the Shoggoth is misaligned in the sense of explicitly (but honestly) plotting to deceive, while the face is misaligned in the sense of dishonestly concealing. 

So I am interpreting you as asking why we might expect that specific division of responsibilities, rather than some other divisions such as those you mention.

One reason is that we already see this empirically in the o1 report.

However, to me, the distinction between your case 1 and 2 is not so important. Both scenarios you propose preserve the important thing: there is a mismatch between an honest CoT and a dishonest final answer, which would allow the deceptive final answer to be detected. 

There could be other cases where this doesn't happen; this method is not a guaranteed lie detector. To me, the point is that it will at least sometimes happen. A lie detector that only sometimes works is better than no lie detector at all.

If you give a kid a diary and try to avoid giving them any reason to think you're reading it, then the kid might write honestly in the diary and reveal some deceptions you wouldn't previously have known about. The kid might also do any number of other things. However, setting aside the ethics of snooping on your kid and lying to them about it, it's better than nothing.

Yeah, I agree that's at least somewhat true. So, given that, is it a good move or not? I don't see much of an upside, since there's a heavy financial incentive for the big labs to do little about concerning results observed in such models. IE, when it comes to the question of whether frontier labs training o1-like models should follow OpenAI's example of avoiding safety training for the CoT, I think it's right to discourage them from doing this rather than encourage them... although, I say this with very low confidence.

I don't think it is worth getting into all the stuff you're mentioning here, but I think a key crux is that I'm expecting the face to be quite dumb (e.g. literally 3.5 sonnet might suffice).

I'm reacting to this whole thing as a possible default configuration going forward, rather than as it exists today. All of my concerns are about what happens when you scale it up. For example, I don't find o1's current level of deception hugely concerning in its own right; rather, I see it as a bad sign for the technology as it continues to develop.

I guess one way of framing it is that I find the shoggoth/face idea great as a science experiment; it gives us useful evidence! However, it doesn't make very much sense to me as a safety method intended for deployment.

Ah, yep, this makes sense to me.

Yeah, this is a good point, which doesn't seem addressed by any idea so far.

Chess is like a bounded, mathematically described universe where all the instrumental convergence stays contained, and only accomplishes a very limited instrumentality in our universe (IE chess programs gain a limited sort of power here by being good playmates).

LLMs touch on the real world far more than that, such that MCTS-like skill at navigating "the LLM world" in contrast to chess sounds to me like it may create a concerning level of real-world-relevant instrumental convergence.

Load More