The first automatically produced, (human) peer-reviewed, (ICLR) workshop-accepted[/able] AI research paper: https://sakana.ai/ai-scientist-first-publication/
This is a very low-quality paper.
Basically, the paper does the following:
[operand 1][operator][operand 2]
, e.g. 1+2
or 3*5
I'm skeptical.
Did the Sakana team publish the code that their scientist agent used to write the compositional regularization paper? The post says
...For our choice of workshop, we believe the ICBINB workshop is a highly relevant choice for the purpose of our experiment. As we wrote in the main text, we selected this workshop because of its broader scope, challenging researchers (and our AI Scientist) to tackle diverse research topics that address practical limitations of deep learning, unlike most workshops with a narrow focus on one topic.
This workshop focuse
There have been numerous scandals within the EA community about how working for top AGI labs might be harmful. So, when are we going to have this conversation: contributing in any way to the current US admin getting (especially exclusive) access to AGI might be (very) harmful?
[cross-posted from X]
I find the pessimistic interpretation of the results a bit odd given considerations like those in https://www.lesswrong.com/posts/i2nmBfCXnadeGmhzW/catching-ais-red-handed.
I also think it's important to notice how much less scary / how much more probably-easy-to-mitigate (at least strictly when it comes to technical alignment) this story seems than the scenarios from 10 years ago or so, e.g. from Superintelligence / from before LLMs, when pure RL seemed like the dominant paradigm to get to AGI.
I agree it's bad news w.r.t. getting maximal evidence about steganography and the like happening 'by default'. I think it's good news w.r.t. lab incentives, even for labs which don't speak too much about safety.
I pretty much agree with 1 and 2. I'm much more optimistic about 3-5 even 'by default' (e.g. R1's training being 'regularized' towards more interpretable CoT, despite DeepSeek not being too vocal about safety), but especially if labs deliberately try for maintaining the nice properties from 1-2 and of interpretable CoT.
If "smarter than almost all humans at almost all things" models appear in 2026-2027, China and several others will be able to ~immediately steal the first such models, by default.
Interpreted very charitably: but even in that case, they probably wouldn't have enough inference compute to compete.
Quick take: this is probably interpreting them over-charitably, but I feel like the plausibility of arguments like the one in this post makes e/acc and e/acc-adjacent arguments sound a lot less crazy.
To the best of my awareness, there isn't any demonstrated proper differential compute efficiency from latent reasoning to speak of yet. It could happen, it could also not happen. Even if it does happen, one could still decide to pay the associated safety tax of keeping the CoT.
More generally, the vibe of the comment above seems too defeatist to me; related: https://www.lesswrong.com/posts/HQyWGE2BummDCc2Cx/the-case-for-cot-unfaithfulness-is-overstated.
They also require relatively little compute (often around $1 for a training run), so AI agents could afford to test many ideas.
Ok, this seems surprisingly cheap. Can you say more about what such a 1$ training run typically looks like (what the hyperparameters are)? I'd also be very interested in any analysis about how SAE (computational) training costs scale vs. base LLM pretraining costs.
...I wouldn't be surprised if SAE improvements were a good early target for automated AI research, especially if the feedback loop is just "Come up with idea, modify existin
Some additional evidence: o3 used 5.7B tokens per task to achieve its ARC score of 87.5%; it also scored 75.7% on low compute mode using 33M tokens per task:
It might also be feasible to use multimodal CoT, like in Imagine while Reasoning in Space: Multimodal Visualization-of-Thought, and consistency checks between the CoTs in different modalities. Below are some quotes from a related chat with Claude about this idea.
...multimodal CoT could enhance faithfulness through several mechanisms: cross-modal consistency checking, visual grounding of abstract concepts, increased bandwidth costs for deception, and enhanced interpretability. The key insight is that coordinating deception across multiple modalities would be s
At the very least, evals for automated ML R&D should be a very decent proxy for when it might be feasible to automate very large chunks of prosaic AI safety R&D.
We find that these evaluation results are nuanced and there is no one ideal SAE configuration - instead, the best SAE varies depending on the specifics of the downstream task. Because of this, we cannot combine the results into a single number without obscuring tradeoffs. Instead, we provide a range of quantitative metrics so that researchers can measure the nuanced effects of experimental changes.
It might be interesting (perhaps in the not-very-near future) to study if automated scientists (maybe roughly in the shape of existing ones, like https://sakana....
I expect that, fortunately, the AI safety community will be able to mostly learn from what people automating AI capabilities research and research in other domains (more broadly) will be doing.
It would be nice to have some hands-on experience with automated safety research, too, though, and especially to already start putting in place the infrastructure necessary to deploy automated safety research at scale. Unfortunately, AFAICT, right now this seems mostly bottlenecked on something like scaling up grantmaking and funding capacity, and there doesn't...
From https://x.com/__nmca__/status/1870170101091008860:
o1 was the first large reasoning model — as we outlined in the original “Learning to Reason” blog, it’s “just” an LLM trained with RL. o3 is powered by further scaling up RL beyond o1
@ryan_greenblatt Shouldn't this be interpreted as a very big update vs. the neuralese-in-o3 hypothesis?
Do you have thoughts on the apparent recent slowdown/disappointing results in scaling up pretraining? These might suggest very diminishing returns in scaling up pretraining significantly before 6e27 FLOP.
They've probably scaled up 2x-4x compared to the previous scale of about 8e25 FLOPs, it's not that far (from 30K H100 to 100K H100). One point as I mentioned in the post is inability to reduce minibatch size, which might make this scaling step even less impactful than it should be judging from compute alone, though that doesn't apply to Google.
In any case this doesn't matter yet, since the 1 GW training systems are already being built (in case of Nvidia GPUs with larger scale-up worlds of GB200 NVL72), the decision to proceed to the yet-unobserved next lev...
I've had similar thoughts previously: https://www.lesswrong.com/posts/wr2SxQuRvcXeDBbNZ/bogdan-ionut-cirstea-s-shortform?commentId=rSDHH4emZsATe6ckF.
Gemini 2.0 Flash Thinking is claimed to 'transparently show its thought process' (in contrast to o1, which only shows a summary): https://x.com/denny_zhou/status/1869815229078745152. This might be at least a bit helpful in terms of studying how faithful (e.g. vs. steganographic, etc.) the Chains of Thought are.
A fairer comparison would probably be to actually try hard at building the kind of scaffold which could use ~10k$ in inference costs productively. I suspect the resulting agent would probably not do much better than with 100$ of inference, but it seems hard to be confident. And it seems harder still to be confident about what will happen even in just 3 years' time, given that pretraining compute seems like it will probably grow about 10x/year and that there might be stronger pushes towards automated ML.
A related announcement, explicitly targeting...
The toy task reminded me of the 'Hidden side objectives' subsection in section 'B.1.2 OBFUSCATED SCHEMING REASONING' of Towards evaluations-based safety cases for AI scheming.
For the SOTA on swebench-verified as of 16-12-2024: 'it was around $5k for a total run.. around 8M tokens for a single swebench-problem.'
'That means, around three months, it is possible to achieve performance comparable to current state-of-the-art LLMs using a model with half the parameter size.'
If this trend continues, combined with (better/more extensible) inference scaling laws, it could make LM agents much more competitive on many AI R&D capabilities soon, at much longer horizon tasks.
E.g. - figure 11 from RE-Bench: Evaluating frontier AI R&D capabilities of language model agents against human experts:
Also related: Before smart AI, there will be many mediocre or specialized AIs....
The kind of instrumental reasoning required for alignment faking seems relevant, including through n-hop latent reasoning; see e.g. section 'B.1.3 HIDDEN SCHEMING REASONING' from Towards evaluations-based safety cases for AI scheming. I wouldn't be too surprised if models could currently bypass this through shortcuts, but a mix of careful data filtering + unlearning of memorized facts about deceptive learning, as suggested in https://www.lesswrong.com/posts/9AbYkAy8s9LvB7dT5/the-case-for-unlearning-that-removes-information-from-llm#Information_you_should_p...
I don't dispute that transformers can memorize shortcuts. I do dispute their ability to perform latent (opaque) multi-hop reasoning robustly. And I think this should be (very) non-controversial; e.g. Mor Geva has many papers on this topic.
I'm pointing out that transformers seem really bad at internal multi-hop reasoning; currently they can't even do 2-hop robustly, 3-hop robustly seems kind of out of the question right now, and scaling doesn't seem to help much either (see e.g. Figures 2 and 3 in Do Large Language Models Perform Latent Multi-Hop Reasoning without Exploiting Shortcuts? and also how much more robust and scalable CoT reasoning is). So 'chain-of-thought but internalized to the model will take over' seems very unlikely with transformers, and much more so if basic mitigations lik...
I do indeed predict that we will see chain-of-thought become less faithful as model capabilities increase, and that other ways of doing the same thing as chain-of-thought but internalized to the model will take over.
This prediction seems largely falsified as long as transformers remain the dominant architecture, and especially if we deliberately add optimization pressures towards externalized reasoning and against internal, latent reasoning; see e.g. Do Large Language Models Perform Latent Multi-Hop Reasoning without Exploiting Shortcuts? and LLMs Do Not Think Step-by-step In Implicit Reasoning.
Thanks for this post!
This looks much worse than I thought it would, both in terms of funding underdeployment, and in terms of overfocusing on evals.
Claude Sonnet-3.5 New, commenting on the limited scalability of RNNs, when prompted with 'comment on what this would imply for the scalability of RNNs, refering (parts of) the post' and fed https://epoch.ai/blog/data-movement-bottlenecks-scaling-past-1e28-flop (relevant to opaque reasoning, out-of-context reasoning, scheming):
'Based on the article's discussion of data movement bottlenecks, RNNs (Recurrent Neural Networks) would likely face even more severe scaling challenges than Transformers for several reasons:
If this generalizes, OpenAI's Orion, rumored to be trained on synthetic data produced by O1, might see significant gains not just in STEM domains, but more broadly - from O1 Replication Journey -- Part 2: Surpassing O1-preview through Simple Distillation, Big Progress or Bitter Lesson?:
'this study reveals how simple distillation from O1's API, combined with supervised fine-tuning, can achieve superior performance on complex mathematical reasoning tasks. Through extensive experiments, we show that a base model fine-tuned on simply tens of thousands of sampl...
QwQ-32B-Preview was released open-weights, seems comparable to o1-preview. Unless they're gaming the benchmarks, I find it both pretty impressive and quite shocking that a 32B model can achieve this level of performance. Seems like great news vs. opaque (e.g in one-forward-pass) reasoning. Less good with respect to proliferation (there don't seem to be any [deep] algorithmic secrets), misuse and short timelines.
...The above numbers suggest that (as long as sample efficiency doesn’t significantly improve) the world will always have enough compute to produce at least 23 million token-equivalents per second from any model that the world can afford to train (end-to-end, chinchilla-style). Notably, these are many more token-equivalents per second than we currently have human-AI-researcher-seconds per second. (And the AIs would have the further advantage of having much faster serial speeds.)
So once an AI system trained end-to-end can produce similarly much value per token
I'm very uncertain and feel somewhat out of depth on this. I do have quite some hope though from arguments like those in https://aiprospects.substack.com/p/paretotopian-goal-alignment.
(Also, what Thane Ruthenis commented below.)
...I think the general impression of people on LW is that multipolar scenarios and concerns over "which monkey finds the radioactive banana and drags it home" are in large part a driver of AI racing instead of being a potential impediment/solution to it. Individuals, companies, and nation-states justifiably believe that whichever one of them accesses potentially superhuman AGI first will have the capacity to flip the gameboard at-will, obtain power over the entire rest of the Earth, and destabilize the currently-existing system. Standard game theory explains
I'm envisioning something like: scary powerful capabilities/demos/accidents leading to various/a coalition of other countries asking the US (and/or China) not to build any additional/larger data centers (and/or run any larger training runs), and, if they're scared enough, potentially even threatening various (escalatory) measures, including economic sanctions, blockading the supply of compute/prerequisites to compute, sabotage, direct military strikes on the data centers, etc.
I'm far from an expert on the topic, but I suspect it might not be trivial to hid...
Hot take, though increasingly moving towards lukewarm: if you want to get a pause/international coordination on powerful AI (which would probably be net good, though likely it would strongly depend on implementation details), arguments about risks from destabilization/power dynamics and potential conflicts between various actors are probably both more legible and 'truer' than arguments about technical intent misalignment and loss of control (especially for not-wildly-superhuman AI).
arguments about risks from destabilization/power dynamics and potential conflicts between various actors are probably both more legible and 'truer'
Say more?
I think the general impression of people on LW is that multipolar scenarios and concerns over "which monkey finds the radioactive banana and drags it home" are in large part a driver of AI racing instead of being a potential impediment/solution to it. Individuals, companies, and nation-states justifiably believe that whichever one of them accesses potentially superhuman AGI first will have the cap...
Here's a somewhat wild idea to have a 'canary in a coalmine' when it comes to steganography and non-human (linguistic) representations: monitor for very sharp drops in BrainScores (linear correlations between LM activations and brain measurements, on the same inputs) - e.g. like those calculated in Scaling laws for language encoding models in fMRI. (Ideally using larger, more diverse, higher-resolution brain data.)
Mostly the same, perhaps a minor positive update on the technical side (basically, from systems getting somewhat stronger - so e.g. closer to automating AI safety research - while still not showing very dangerous capabilities, like ASL-3, prerequisites to scheming, etc.). My views are even more uncertain / unstable on the governance side though, which probably makes my overall p(doom) (including e.g. stable totalitarianism, s-risks, etc.) more like 20% than 5% (I was probably mostly intuitively thinking of extinction risk only when giving the 5% figure a year ago; overall my median probably hasn't changed much, but I have more variance, coming from the governance side).
Proposal part 3: Use Paraphraser: One more complication. The outputs of the Shoggoth? Paraphrase them. For example, after each line of reasoning CoT is complete, pause the Shoggoth and have a different specialized paraphraser model generate 10 syntactically distinct but semantically equivalent ways of saying the same thing. Then pick one at random and replace the original line of reasoning with it. Then boot up the Shoggoth again and have it continue the CoT.
Any thoughts on how much of a (computational) alignment tax this would impose? Related, thoughts on...
'China hawk and influential Trump AI advisor Jacob Helberg asserted to Reuters that “China is racing towards AGI," but I couldn't find any evidence in the report to support that claim.' https://x.com/GarrisonLovely/status/1859022323799699474
AFAICT, there seems to quite heavy overlap between the proposal and Daniel's motivation for it and safety case (sketch) #3 in https://alignment.anthropic.com/2024/safety-cases/.
'The report doesn't go into specifics but the idea seems to be to build / commandeer the computing resources to scale to AGI, which could include compelling the private labs to contribute talent and techniques.
DX rating is the highest priority DoD procurement standard. It lets DoD compel companies, set their own price, skip the line, and do basically anything else they need to acquire the good in question.' https://x.com/hamandcheese/status/1858902373969564047
(screenshot in post from PDF page 39 of https://www.uscc.gov/sites/default/files/2024-11/2024_Annual_Report_to_Congress.pdf)
'🚨 The annual report of the US-China Economic and Security Review Commission is now live. 🚨
Its top recommendation is for Congress and the DoD to fund a Manhattan Project-like program to race to AGI.
Buckle up...'
In the reuters article they highlight Jacob Helberg: https://www.reuters.com/technology/artificial-intelligence/us-government-commission-pushes-manhattan-project-style-ai-initiative-2024-11-19/
He seems quite influential in this initiative and recently also wrote this post:
https://republic-journal.com/journal/11-elements-of-american-ai-supremacy/
Wikipedia has the following paragraph on Helberg:
“ He grew up in a Jewish family in Europe.[9] Helberg is openly gay.[10] He married American investor Keith Rabois in a 2018 ceremony officiated by Sam Altman.”
Might ...
...And the space of interventions will likely also include using/manipulating model internals, e.g. https://transluce.org/observability-interface, especially since (some kinds of) automated interpretability seem cheap and scalable, e.g. https://transluce.org/neuron-descriptions estimated a cost of < 5 cents / labeled neuron. LM agents have also previously been shown able to do interpretability experiments and propose hypotheses: https://multimodal-interpretability.csail.mit.edu/maia/, and this could likely be integrated with the above. The auto-interp expl
Any thoughts on potential connections with task arithmetic? (later edit: in addition to footnote 2)
Would the prediction also apply to inference scaling (laws) - and maybe more broadly various forms of scaling post-training, or only to pretraining scaling?
Epistemic status: at least somewhat rant-mode.
I find it pretty ironic that many in AI risk mitigation would make asks for if-then committments/RSPs from the top AI capabilities labs, but they won't make the same asks for AI safety orgs/funders. E.g.: if you're an AI safety funder, what kind of evidence ('if') will make you accelerate how much funding you deploy per year ('then')?
One of these types of orgs is developing a technology with the potential to kill literally all of humanity. The other type of org is funding research that if it goes badly mostly just wasted their own money. Of course the demands for legibility and transparency should be different.
In light of recent works on automating alignment and AI task horizons, I'm (re)linking this brief presentation of mine from last year, which I think stands up pretty well and might have gotten less views than ideal:
Towards automated AI safety research