Coming here from your email. It's great to see so much thought and effort go into trying to make an evidence-based case for asking for public donations, which I think is rare to see.
A question that occurs is that the donations chart seems to show that <$1M/year of donations were needed up to 2020 (I can't read off precise figures) - let's say it would be $1M/yr today after adding inflation. The site metrics seem to have been on solid upward trends by then, so it seems like it was at least possible to run LessWrong well on that budget. Would it be fair t...
Why's that? They seem to be going for AGI, can afford to invest billions if Zuckerberg chooses, their effort is led by one of the top AI researchers and they have produced some systems that seem impressive (at least to me). If you wanted to cover your bases, wouldn't it make sense to include them? Though 3-5% may be a bit much (but I also think it's a bit much for the listed companies besides MS and Google). Or can a strong argument be made for why, if AGI were attained in the near term, they wouldn't be the ones to profit from it?
- Invest like 3-5% of my portfolio into each of Nvidia, TSMC, Microsoft, Google, ASML and Amazon
Should Meta be in the list? Are the big Chinese tech companies considered out of the race?
Do you mean you'd be adding the probability distribution with that covariance matrix on top of the mean prediction from f, to make it a probabilistic prediction? I was talking about deterministic predictions before, though my text doesn't make that clear. For probabilistic models, yes adding an uncertainty distribution may make result in non-zero likelihoods. But if we know the true dynamics are deterministic (pretend there's no quantum effects, which are largely irrelevant for our prediction errors for systems in the classical physics domai...
Yes I'd selected that because I thought it might get it to work. And now I've unselected it, it seems to be working. It's possible this was a glitch somewhere or me just being dumb before I guess.
I wonder whether the models are so coarse that the cyclones that do emerge are in a sense the minimum size.
It's not my area, but I don't think that's the case. My impression is that part of what drives very high wind speeds in the strongest hurricanes is convection on the scale of a few km in the eyewall, so models with that sort of spatial resolution can generate realistically strong systems, but that's ~20x finer than typical climate model resolutions at the moment, so it will be a while before we can simulate those systems routinely (though, some argue we could do it if we had a computer costing a few billion dollars).
do you know what discretization methods are typically used for the fluid dynamics?
There's a mixture - finite differencing used to be used a lot but seems to be less common now, semi-Lagrangian advection seems to have taken over from that in models that used it, then some work by doing most of the computations in spectral space and neglecting the smallest spatial scales. Recently newer methods have been developed to work better on massively parallel computers. It's not my area, though, so I can't give a very expert answer - but I'm pretty sure the people
...I'm using Chrome 80.0.3987.163 in Mac OSX 10.14.6. But I also tried it in Firefox and didn't get formatting options. But maybe I'm just doing the wrong thing...
Thanks, yes this is very relevant to thinking about climate modelling, with the dominant paradigm being that we can separately model phenomena above and below the resolved scale - there's an ongoing debate, though, about whether a different approach would work better, and it gets tricky when the resolved scale gets close to the size of important types of weather system.
climate models are already "low-level physics" except that "low-level" means coarse aggregates of climate/weather measurements that are so big that they don't include tropical cyclones!
Just as as aside, a typical modern climate model will simulate tropical cyclones as emergent phenomena from the coarse-scale fluid dynamics, albeit not enough of the most intense ones. Though, much smaller tropical thunderstorm-like systems are much more crudely represented.
Thanks again.
I think I need to think more about the likelihood issue. I still feel like we might be thinking about different things - when you say "a deterministic model which uses fundamental physics", this would not be in the set of models that we could afford to run to make predictions for complex systems. For the models we could afford to run, it seems to me that no choice of initial conditions would lead them to match the data we observe, except by extreme coincidence (analogous to a simple polynomial just happening to pass through all the datapoints
...Thanks again. OK I'll try using MarkDown...
I think 'algorithm' is an imprecise term for this discussion.
Perhaps I used the term imprecisely - I basically meant it in a very general sense of being some process, set of rules etc. that a computer or other agent could follow to achieve the goal.
...We need good decision theories to know when to search for more or better bottom-up models. What are we missing? How should we search? (When should we give up?)
The name for 'algorithms' (in the expansive sense) that can do what you're asking is 'general intelligenc
Thanks for your reply. (I repeat my apology from below for not apparently being able to use formatting options in my browser in this.)
"I think it's an open question whether we can generally model complex systems at all – at least in the sense of being able to make precise predictions about the detailed state of entire complex systems."
I agree modelling the detailed state is perhaps not possible. However, there are at least some complex systems we can model and get substantial positive skill at predicting particular variables without needing to model all th
...Thanks for your detailed reply. (And sorry I couldn't format the below well - I don't seem to get any formatting options in my browser.)
"It is rarely too difficult to specify the true model...this means that "every member of the set of models available to us is false" need not hold"
I agree we could find a true model to explain the economy, climate etc. (presumably the theory of everything in physics). But we don't have the computational power to make predictions of such systems with that model - so my question is about how should we make predictions when t
...OK, I made some edits. I left the "rational" in the last paragraph because it seemed to me to be the best word to use there.
Would it make sense then for Lightcone people to not have positions at funding orgs like these?