This is an excerpt from a longer article I wrote, where I go into much more depth on many of the ideas here.
In his blog post, Probability theory does not extend logic, David Chapman goes through a number of examples which he claims don't make sense, and therefore Bayesian 1st order logic is dead in the water. I'm now going to take up Chapman's challenge to make his examples well posed, i.e. syntactically valid (only one way to blindly parse the math) and with a reasonable interpretation of what is going on.
Through his "Challenge" problems, Chapman wants to demonstrate that arbitrary nesting of probabilities mixed with quantifiers does not parse, and that... (read 5246 more words →)
I'm being too vague with my use of the word "model". By "model" I just mean some set of possibilities that are grouped together. For instance in machine learning, a model is a parametrized function (which can be regarded as a set of functions each indexed by a parameter). A set of different models is also a model (just more possibilities). Maybe this is not the best word to use.
In the case of Solomonoff induction, some of those programs might contain logic that appear to simulate simple environments with 3D space containing stuff, such as chairs and cars, that interact with each other in the simulation as you'd expect. I'd say the... (read more)