All of DavidS's Comments + Replies

DavidS20

As a minor addendum, I asked microcovid what it thought about spending 4 hours a day indoors unmasked with 20 people, but with a community incidence of 0.5%, attempting to simulate 2019 living with broad acquired immunity. It thinks this is 19,000 microcovids, suggesting it would still lead to infection in 50 days. This is depressing, I had hoped for a lot more gain than that.

DavidS40

Trevor Bedford took a crack at estimating the steady state back in October (so pre-Omicron). He came up with estimates of 20-30% of the population infected annually and deaths of 40K-100K per year in the US. https://twitter.com/trvrb/status/1448297978419101696 . Unfortunately, he didn't show enough of his work for me to understand where the 20-30% number comes from. Deaths is just multiplying number of infections by IFR. The big question mark here is whether high risk people will continue to get boosters; Bedford is guessing yes.

Here is my own attempt to e... (read more)

2DavidS
As a minor addendum, I asked microcovid what it thought about spending 4 hours a day indoors unmasked with 20 people, but with a community incidence of 0.5%, attempting to simulate 2019 living with broad acquired immunity. It thinks this is 19,000 microcovids, suggesting it would still lead to infection in 50 days. This is depressing, I had hoped for a lot more gain than that.
DavidS500

I am curious what kind of analysis you plan to run on the calibration questions. Obvious things to do:

For each user, compute the correlation between their probabilities and the 0-1 vector of right and wrong answers. Then display the correlations in some way (a histogram?).

For each question, compute the mean (or median) of the probability for the correct answers and for the wrong answers, and see how separated they are.

But neither of those feels like a really satisfactory measure of calibration.

8dthunt
At the very least, I suspect one of the analyses will be 'bucketize corresponding to certainty, then plot "what % of responses in bucket were right?"' - something that was done last year (see 2013 LessWrong Survey Results) Last year it was broken down into "elite" and "typical" LW-er groups, which presumably would tell you if hanging out here made you better at overconfidence, or something similar in that general vicinity.
DavidS10

"Naively in the actual Newcombe's problem if omega is only correct 1/999,000+epsilon percent of the time…"

I'd like to argue with this by way of a parable. The eccentric billionaire, Mr. Psi, invites you to his mansion for an evening of decision theory challenges. Upon arrival, Mr. Psi's assistant brings you a brandy and interviews you for hours about your life experiences, religious views, favorite philosophers, ethnic and racial background … You are then brought into a room. In front of you is a transparent box with a $1 bill in it, and an opaq... (read more)

DavidS20

A few years ago, I tried to write a friendly introduction to this technical part.

DavidS00

The grammar of the sentence is a bit hard to follow. When I am presenting this paradox to friends (I have interesting friends), I hand them a piece of paper with the following words on it:

Take another piece of paper and copy these words:

"Take another piece of paper and copy these words: "QQQ" Then replace the three consecutive capital letters with another copy of those words. The resulting paragraph will make a false claim."

Then replace the three consecutive capital letters with another copy of those words. The resulting paragraph wi

... (read more)
DavidS10

Well, I was trying to make the simplest possible example. We can of course add the monkey to our pool of experts. But part of the problem of machine learning is figuring out how long we need to watch an expert fail before we go to the monkey.

DavidS30

Suppose there are two experts, and two horses. Expert 1 always predicts horse A, expert 2 always predicts horse B, the truth is that the winning horse cycles ABABABABABA... The frequentist randomizes choice of expert according to weights; the Bayesian always chooses the expert who currently has more successes, and flips a coin when the experts are tied. (Disclaimer: I am not saying that this is the only possible strategies consistent with these philosophies, I am just saying that that these seem like the simplest possible instantiations of "when I act... (read more)

2trist
Consider all the possible outcomes of the races. Any algorithm will be right half the time (on average for the non-deterministic ones), on any subset of those races algorithms (other than random guessing) some algorithms will do better than others. We're looking for algorithms that do well in the subsets that match up to reality. The more randomness in an algorithm, the less the algorithm varies across those subsets. By doing better in subsets that don't match reality the weighted maximum algorithm does worse in the subsets that do, which are the ones we care about. There are algorithms that does better in reality, and they have less randomness. (Now if none can be reduced from giant lookup tables, that'd be interesting...) How often are the models both perfectly contradictory and equal to chance? How often is reality custom tailored to make the algorithm fail? Those are the cases you're protecting against, no? I imagine there are more effective ways.
5Oscar_Cunningham
A monkey who picked randomly between the experts would do better than both the "frequentist" and the "bayesian". Maybe that should worry us...
DavidS00

I thought it was interesting too. As far as I can tell, your result is special to the situation of two bettors and two events. The description I gave describes a betting method when there are more than two alternatives, and that method is strategy proof, but it is not fair, and I can't find a fair version of it.

I am really stumped about what to do when there are three people and a binary question. Naive approaches give no money to the person with the median opinion.

5Scott Garrabrant
I wrote up an answer to this here http://bywayofcontradiction.com/?p=118
0Scott Garrabrant
You could just do all three pairwise bets. That will not be fair, since not everyone participates in all bets. The middle man might just be guaranteed to make money though. (for some probabilities)
DavidS180

Here is another attempt to present the same algorithm, with the goal of making it easier to memorize:

"Each puts in the square of their surprise, then swap."

To spell this out, I predict that some event will happen with probability 0.1, you say it is 0.25. When it happens, I am 0.9 surprised and you are only 0.75 surprised. So I put down (0.9)^2 D, you put down (0.75)^2 D, and we swap our piles of money. Since I was more surprised, I come out the loser on the deal.

"Square of the surprise" is a quantity commonly used to measure the failu... (read more)

7Scott Garrabrant
I thought it was very interesting that my natural assumptions lead to a Brier score like system rather than Bayes score. I really don't think Bayesianists respect Brier score enough.
DavidS50

The operations on a Rubix cube aren't abelian. Is that just a typo on your part, or am I missing some subtle point you are making?

I'm not sure what you are getting at when you say you don't want to found math on sets. I definitely intended to use the word "set" in a naive sense, so that it is perfectly fine for sets to contain numbers, or rotations of a Rubix cube, or for that matter rocks and flowers. I wasn't trying to imply that the elements of a model had to be recursively constructed from the nullset by the axioms of ZFC. If you prefer "... (read more)

0So8res
Oops, typo. (The typo was that I said "commutative" when dereferencing "group"; notice that I said "any model of group theory" and not "any model of abelian group theory".) Thanks for the tip. Ok, cool. I guess my point is that set theory is a formal representation of real things, but it is not the things themselves. The "model" is the real thing, which happens to be representable as a set. I tried to make this wording clear (especially in the next post), but I don't think I succeeded. Me too! But mostly because my "implicit" formal system is set theory. If we were working with different foundations (let's say type theory, because that's the only other potentially-foundational system I know) then I would want to think of a model as elements of a type, and function symbols would need to be typed, and so on. This is why I defined the model as an in interpretation which follows certain rules, rather than as a set+function specifically: In my head, the concept of a model is separate from the system I use to represent them. At this point, it's a matter of perspective, and I acknowledge that my viewpoint is non-standard. You're definitely correct that I should have used more concrete examples ("these axioms are group theory; actual groups are models" etc.) from the get-go. Thanks, I've edited the post to make this a bit more clear. I very much appreciate the critiques. I admit that the next post is pretty sloppy; it was somewhat rushed and I couldn't go into the depth I wanted. I far underestimated how much must be taught before you can express even the easy parts of model theory. I skimped on formally defining quite a few things, power-of-a-model among them.
DavidS10

The reals can be studied as models of many theories. They (with the operation +, relation = and element 0) are a model of the axioms of an abelian group. They are also a model of the axioms of a group. The reals with (+, , 0, 1, =) are a model of the axioms of a field. The reals with (+, , 0, 1, =, <) are a model of the axioms of an ordered field. Etcetera...

Models are things. Theories are collections of statements about things. A model can satisfy many theories; a theory can have many models. I agree completely with So8res statement that it is importa... (read more)

DavidS120

"A model is an interpretation of the sentences generated by a language. A model is a structure which assigns a truth value to each sentence generated by some language under some logic."

I think this phrasing will be very misleading to anyone who tries to learn model theory from these posts. This is one thing a model DOES, but it isn't what a model IS. As far as I can tell, you nowhere say what a model is, even approximately. Writing out precisely what a model is takes a lot of space (like in the book you're reading!) so let me give an example.

Ou... (read more)

0So8res
Thanks! Good point, that distinction is useful. I've updated the post to make this more clear (under the "models" header). Personally, I tend to view things the other way around. As far as I'm concerned, a model of abelian group theory is anything that interprets sentences appropriately (while obeying the rules of the logic), for some value of "interprets". It so happens that any model of group theory is isomorphic to some pointed set with an associative operator for which the point is an identity, but the model doesn't have to be a pointed set with an associative operator for which point is an identity. It could also be operations on a rubix cube. From my point of view, you've got 'IS' and 'DOES' backwards :-) It's just perspective, I suppose. I don't particularly view set theory as foundational; I view it as one formalization that happens to have high enough fidelity to represent the behavior of any given model. Still, your view is definitely the more standard one. Well, this post is "Context for Model Theory": I didn't intend to introduce models themselves here. Though your concerns probably apply to the follow-up post as well.
0Shmi
Hmm, but the axiom sets are different for rationals and reals, since the latter require Dedekind-completeness, which selects a different theory from the language+logic (in So8res's terms). Why would one try to compare/distinguish models in different theories based on a subset of the logic and a subset of axioms?
DavidS80

Let me suggest a world view which is much less negative than the other replies: I view panhandlers as vendors of warm fuzzies and therefore treat them as I would any other street vendor whose product I am most likely not interested in. In particular, I have no reason to be hostile to them, or to be disrespectful of their trade.

If they engage me politely, I smile and say "No thanks." I think the second word there is helpful to my mindset and also makes their day a little better. If they become hostile or unpleasant, I feel no guilt about ignoring ... (read more)

DavidS320

Here is an attempt to create a roadmap to the amplituhedron work. My relevant background and disclaimers: I am a mathematician with interests in particle physics who has been trying to learn about Arkani-Hamed and collaborators' ideas for the last two years. The specific result which is getting press now is one that has not been public for most of that time; my goal had been to understand the story of scattering amplitudes as described in his prior 154 page paper. I have been meeting regularly with a group of mathematicians and physicists here at the Unive... (read more)

2linkhyrule5
Thanks! I'm a busy undergrad, so this'll take me a few years to work through, but it's always good to have more things to read :P.
DavidS240

"What hidden obstacle could be causing my failures?"

My mental shorthand for this is the following experience: I try to pull open the silverware drawer. It jams at an inch open. I push it shut and try again, same result. I pull harder, it opens a tiny bit more before stopping.

Reflection: Some physical object is getting in the way of the motion. Something could be on the drawer track, but more likely it is inside the drawer. It is a rigid object, because I always stop at the same place, although slightly squashable because I was able to yank and p... (read more)

DavidS00

So, what do you all think is Voldemort's goal here? In canon, he was a power hungry sadist, so conquering the world while torturing his minions made sense. But MOR!Voldemort seems to find people tiresome and is happiest as an immortal in lifeless space. In that case, why not Horcrux Pioneer 11, kill his earthly body and be done with it?

At the moment, he has a plausible motivation -- provoke Harry into discovering a better form of immortality than Horcruxes, and use it for himself. But it seems implausible that this was his goal until Harry came to Hogwart... (read more)

knb150

I think Quirrelmort enjoys many aspects of life on Earth (he is shown to enjoy fancy foods and intricate plots, etc.) He enjoys outer space as an occasional respite from human nonsense, but that doesn't mean he would enjoy a billion years of staring at the stars.

-3RomeoStevens
My goal had I access to magic: 1. instantiate self in immortal form 2. build experience machine 3. make 1 and 2 unreachable by launching them out of the solar system He did say he was worried about morons...I mean Harry destroying the probe. So all his efforts could be merely to ensure his survival. But that would make for a rather lackluster villain/ending.
2gjm
Conventional wisdom around here, as I understand it: He wanted to unify Magical Britain under a strong leader (namely himself, in the persona of David Monroe) and wipe out, or neutralize, or otherwise remove the danger posed by, the muggles. He wanted to do this because he was very, very frightened of dying, and he thought nuclear weapons (and potentially other things you might classify as "scientific overreaching") were likely to produce more destruction than he could escape. And probably also because he wanted power.
DavidS190

I remember hearing the story of a mathematical paper published in English but written by a Frenchmen, containing the footnotes:

1 I am grateful to professor Littlewood for helping me translate this paper into English.2

2 I am grateful to professor Littlewood for helping me translate this footnote into English.3

3 I am grateful to professor Littlewood for helping me translate this footnote into English.

Why was no fourth footnote necessary?

DavidS20

Other nitpicks (which I don't think are real problems):

If the Wikipedia article on Kakatuni's fixed point theorem is to be believed, then Kakatuni's result is only for finite dimensional vector spaces. You probably want to be citing either Glicksberg or Fan for the infinite dimensional version. These each have some additional hypotheses, so you should check the additional hypotheses.

At the end of the proof of Theorem 2, you want to check that the graph of is closed. Let be the graph of . What you check is that, if ) is a sequence of points in which app... (read more)

DavidS20

In the proof of Theorem 2, you write "Clearly is convex." This isn't clear to me; could you explain what I am missing?

More specifically, let ) be the subset of obeying %20%3C%20b%20\%20\implies%20\%20\mathbb{P}\left(%20a%20%3C%20\mathbb{P}(\lceil%20\phi%20\rceil)%20%3C%20b%20\right)%20=1%20). So }%20X(\phi,a,b)). If ) were convex, then would be as well.

But ) is not convex. Project ) onto in the coordinates corresponding to the sentences and %20%3C%20b). The image is %20\cup%20\left(%20%20[0,1]%20\times%20\{%201%20\}%20\right)%20\cup%20\left(... (read more)

1Quinn
The set A is convex because the convex combination (t times one plus (1-t) times the other) of two coherent probability distributions remains a coherent probability distribution. This in turn is because the convex combination of two probability measures over a space of models (cf. definition 1) remains a probability distribution over the space of models. I think, but am not sure, that your issue is looking at arbitrary points of [0,1]^{L'}, rather than the ones which correspond to probability measures.
2DavidS
Other nitpicks (which I don't think are real problems): If the Wikipedia article on Kakatuni's fixed point theorem is to be believed, then Kakatuni's result is only for finite dimensional vector spaces. You probably want to be citing either Glicksberg or Fan for the infinite dimensional version. These each have some additional hypotheses, so you should check the additional hypotheses. At the end of the proof of Theorem 2, you want to check that the graph of is closed. Let be the graph of . What you check is that, if ) is a sequence of points in which approaches a limit, then that limit is in . This set off alarm bells in my head, because there are examples of a topological space , and a subspace , so that is not closed in but, if is any sequence in which approaches a limit in , then that limit is in . See Wikipedia's article on sequential spaces. However, this is not an actual problem. Since is countable, is metrizable and therefore closure is the same as sequential closure in .
DavidS10

This is pretty close to how I remember the discussion in GEB. He has a good discussion of non-Euclidean geometry. He emphasizes that originally the negation of Parallel Postulate was viewed as absurd, but that now we can understand that the non-Euclidean axioms are perfectly reasonable statements which describe something other than plane geometry we are used to. Later he has a bit of a discussion of what a model of PA + NOT(CON(PA)) would look like. I remember finding it pretty confusing, and I didn't really know what he was getting at until I red some act... (read more)