All of Douglas Summers-Stay's Comments + Replies

Here's a fun paper I wrote along these lines. I took an old whitepaper of McCarthy from 1976 where he introduces the idea of natural language understanding and proposes a set of questions about a news article that such a system should be able to answer. I asked the questions to GPT 3 and looked at what it got right and wrong and guessed at why. 
What Can a Generative Language Model Answer About a Passage? 

And from Levana Or, The Doctrine of Education By Jean Paul, 1848:  "Another parental delay, that of punishment, is of use for children of the second five years (quinquennium.) Parents and teachers would more frequently punish according to the line of exact justice, if, after every fault in a child, they would only count four and twenty, or their buttons, or their fingers. They would thereby let the deceiving present round themselves, as well as round the children escape the cold still empire of clearness would remain behind;"

Here is an example from The Friend magazine, January 1853: "'Do you hear me, sir!' asked the captain. 'I give you whilst I count ten to start. I do not wish to shoot you, Wilson, but if you do not move before I count ten I'll drive this ball through you-- as I hope to reach port, I will.' Raising his pistol until it covered the boat swain's breast the captain commenced counting in a clear and audible tone. Intense excitement was depicted on the faces of the men and some anxiety was shown by the quick glances cast by the chief mate and steward first at the ... (read more)

3Douglas Summers-Stay
And from Levana Or, The Doctrine of Education By Jean Paul, 1848:  "Another parental delay, that of punishment, is of use for children of the second five years (quinquennium.) Parents and teachers would more frequently punish according to the line of exact justice, if, after every fault in a child, they would only count four and twenty, or their buttons, or their fingers. They would thereby let the deceiving present round themselves, as well as round the children escape the cold still empire of clearness would remain behind;"

Could you try a prompt that tells it to end a sentence with a particular word, and see how that word casts its influence back over the sentence? I know that this works with GPT-3, but I didn't really understand how it could.

1nostalgebraist
Interesting topic! I'm not confident this lens would reveal much about it (vs. attention maps or something), but it's worth a try. I'd encourage you to try this yourself with the Colab notebook, since you presumably have more experience writing this kind of prompt than I do.

Regarding "thinking a problem over"-- I have seen some examples where on some questions that GPT-3 can't answer correctly off the bat, it can answer correctly when the prompt encourages a kind of talking through the problem, where its own generations bias its later generations in such a way that it comes to the right conclusion in the end. This may undercut your argument that the limited number of layers prevents certain kinds of problem solving that need more thought?

7Steven Byrnes
Yeah, maybe. Well, definitely to some extent. I guess I would propose that "using the page as a scratchpad" doesn't help with the operation "develop an idea, chunk it, and then build on it". The problem is that the chunking and building-on-the-chunk have to happen sequentially. So maybe it can (barely) develop an idea, chunk it, and write it down. Then you turn the Transformer back on for the next word, with the previous writing as an additional input, and maybe it takes 30 Transformer layers just to get back to where it was, i.e. having re-internalized that concept from before. And then there aren't enough layers left to build on it... Let alone build a giant hierarchy of new chunks-inside-chunks. So I think that going more than 1 or 2 "steps" of inferential distance beyond the concepts represented in the training data requires that the new ideas get put into the weights, not just the activations. I guess you could fine-tune the network on its own outputs, or something. I don't think that would work, but who knows.

I'm sure there will be many papers to come about GPT-3. This one is already 70 pages long, and must have come not long after the training of the model was finished, so a lot of your questions probably haven't been figured out yet. I'd love to read some speculation on how, exactly, the few-shot-learning works. Take the word scrambles, for instance. The unscrambled word will be represented by one or two tokens. The scrambled word will be represented by maybe five or six much less frequent tokens composed of a letter or two each. Neither set of... (read more)

2Stuart_Armstrong
Thanks! Now open at: https://www.lesswrong.com/posts/GhDfTAtRMxcTqAFmc/assessing-kurzweil-s-1999-predictions-for-2019

Yeah, you're right. It seems like we both have a similar picture of what GPT-2 can and can't do, and are just using the word "understand" differently.

So would you say that GPT-2 has Comprehension of "recycling" but not Comprehension of "in favor of" and "against", because it doesn't show even the basic understand that the latter pair are opposites?

Something like that, yes. I would say that the concept "recycling" is correctly linked to "the environment" by an "improves" relation, and that it Comprehends "recycling" and "the environment" pretty well. But some texts say that the "improves" relation is positive... (read more)

One way we might choose to draw these distinctions is using the technical vocabulary that teachers have developed. Reasoning about something is more than mere Comprehension: it would be called Application, Analysis or Synthesis, depending on how the reasoning is used.

GPT-2 actually can do a little bit of deductive reasoning, but it is not very good at it.

2Wei Dai
So would you say that GPT-2 has Comprehension of "recycling" but not Comprehension of "in favor of" and "against", because it doesn't show even the basic understand that the latter pair are opposites? I feel like even teachers' technical vocabulary isn't great here because it was developed with typical human cognitive development in mind, and AIs aren't "growing up" the same way.

I don't think I am attacking a straw man: You don't believe GPT-2 can abstract reading into concepts, and I was trying to convince you that it can. I agree that current versions can't communicate ideas too complex to be expressed in a single paragraph. I think it can form original concepts, in the sense that 3-year old children can form original concepts. They're not very insightful or complex concepts, and they are formed by remixing, but they are concepts.

5[anonymous]
Ok I think we are talking past each other, hence the accusation of a straw man. When you say "concepts" you are referring to the predictive models, both learned knowledge and dynamic state, which DOES exist inside an instance of GPT-2. This dynamic state is initialized with the input, at which point it encodes, to some degree, the content of the input. You are calling this "understanding." However when I say "concept modeling" I mean the ability to reason about this at a meta-level. To be able to not just *have* a belief which is useful in predicting the next token in a sequence, but to understand *why* you have that belief, and use that knowledge to inform your actions. These are 'lifted' beliefs, in the terminology of type theory, or quotations in functional programming. So to equate belief (predictive capability) and belief-about-belief (understanding of predictive capability) is a type error from my perspective, and does not compute. GPT-2 has predictive capabilities. It does not instantiate a conceptual understanding of its predictive capabilities. It has no self-awareness, which I see as a prerequisite for "understanding."

My thinking was that since everything it knows is something that was expressed in words, and qualia are thought to not be expressed fully in words, then qualia aren't part of what it knows. However, I know I'm on shaky ground whenever I talk about qualia. I agree that one can't be sure it doesn't have qualia, but it seems to me more like a method for tricking people into thinking it has qualia than something that actually does.

I liked how you put this. I've just posted my (approving) response to this on Less Wrong under the title "Does GPT-2 Understand Anything?"

There wasn't a large "manufacturing" sector for agriculture workers to move into, it became a large sector as the workers moved into it. Perhaps some current small sector of the economy will become a large sector as workers move into it? At least in the U.S., there's little evidence to support your claims of it being faster and more widespread-- jobless rates are at historic lows. Unless you mean it hasn't yet begun.

All that said, though, it is certainly the case that if you have a robot that can do anything a person can do, you don't need to hire any more people, and there must be some kind of curve leading up to that as robots become more capable.

3lordtrickster
There is no hypothetical sector just waiting for workers to move to. Manufacturing had always existed and grown steadily so long as the food needs of the population were being met by fewer and fewer agricultural workers. The shift didn't sneak up on anyone. Those "historic low" jobless rates are much lower pay and skill on average than 10 years ago. Over the last 50 years people in those low-skill jobs have (when adjusting for inflation) been steadily making less money. We've reached market saturation on workers needed to meet the demands of the population. I'm one of those people automating things. The really scary part is how much more quickly those of my ilk can automate processes now than even a few years ago. Expect the drop in demand for human effort to get worse exponentially.