If this were true that the concept of „indexical sample space“ does not capture the thirder position, how do you explain that it produces exactly the same probabilities that thirders entertain? Operating with indexicals is a necessary condition (and motivation) for Thirdism, which means assuming indexical sample spaces when it comes to the mathematical formalization of arguments in terms of probability theory. To my knowledge no relevant thirder literature denies that. And within the thirder model, these probabilities indeed hold true. If we assume Monday ...
„Whether or not your probability model leads to optimal descision making is the test allowing to falsify it.“
Sure, I don‘t deny that. What I am saying is, that your probability model don‘t tell you which probability you have to base on a certain decision. If you can derive a probability from your model and provide a good reason to consider this probability relevant to your decision, your model is not falsified as long you arrive at the right decision. Suppose a simple experiment where the experimenter flips a fair coin and you have to guess if Tails or Hea...
Honestly, I do not see any unlawful reasoning going on here. First of all, it‘s certainly important to distinguish between a probability model and a strategy. The job of a probability model is simply to suggest the probability of certain events and to describe how probabilities are affected by the realization of other events. A strategy on the other hand is to guide decision making to arrive at certain predefined goals.
My point is, that the probabilities a model suggests you to have based on the currently available evidence do NOT neccessarily have to matc...
Sure, if the bet is offered only once per experiment, Beauty receives new evidence (from a thirder‘s perspective) and she could update.
In case the bet is offered on every awakening: do you mean if she gives conflicting answers on Monday and Tuesday that the bet nevertheless is regarded as accepted?
My initial idea was, that if for example only her Monday answer counts and Beauty knows that, she could reason that when her answer counts it is Monday, arriving at the conclusion that it is reasonable to act as if it was Monday on every awakening, thus grounding her answer on P(H/Monday)=1/2. Same logic holds for rule „last awakening counts“ and „random awakening counts“.
Rules for per experiment betting seem to be imprecise. What exactly does it mean that Beauty can bet only once per experiment? Does it mean that she is offered the bet only once in case of Tails? If so, is she offered the bet on Monday or Tuesday or is the day randomly selected? Or does it mean that she is offered the bet on both Monday and Tuesday and only one bet counts if she accepts both? If so, which one? Monday bet, Tuesday bet, or is it randomly selected?
Depending on, a Thirder could base his decision on:
P(H/Today is Monday)=1/2, P(H/Today is my last awakening)=1/2, or P(H/Today is the randomly selected day my bet counts/is offered to me)=1/2
and therefore escapes utility instability?
Maybe I expressed myself somewhat misleadingly. I am not saying that she is surprised because the coincidence is more unlikely than the sequence. You are absolutely right in correcting me that the latter isn‘t even the case (also since P(HHTHTHHT/„HHTHTHHT“)=P(HHTHTHHT)=1/2^8). What I was trying to say is that her suprise about the coincidence arises from the circumtance that the coincidence is both unlikely and looks like a pattern. That fact that an event is unlikely is a necessary condition to be surprised about its occurence but not a sufficient condit...
Yes. Our human mind is obviously biased to detect patterns. And people tend to react surprised if they observe patterns where they did not expect them to find. If someone has a specific sequence of coin toss results in her mind (eg. „HHTHTHHT“) and she is able to reproduce it with an actual coin on her first try, then she will likely be surprised. What she is really surprised about however, is not that she has observed an unlikely event ({HHTHTHHT}), but that she has observed an unexpected pattern. In this case, the coincidence of the sequence she had in m...
„And why did you happen to decide that it's P(Tails|Tails) = 1 and P(Heads|Tails) = 0 instead of P(Heads|Heads) = 1 and P(Tails|Heads) = 0 which are "relevant" for you decision making? You seem to just decide the "relevance" of probabilities post hoc, after you've already calculated the correct answer the proper way. I don't think you can formalize this line of thinking, so that you had a way to systematically correctly solve decision theory problems, which you do not yet know the answer to. Otherwise, we wouldn't need utilities as a concept.“
No, it‘... (read more)