All of elseif's Comments + Replies

elseif90

Took the survey. I just missed last year's, so I was glad to get to participate this year.

elseif40

I think you're reading too much into what I'm saying. I'm not suggesting that second order arithmetic is useful as a mathematical framework to talk about reasoning, in the way that first-order logic can. I'm saying that second order arithmetic is a useful way to talk about what makes the natural numbers special.

I'm also not suggesting that second order arithmetic has anything deep to add relative to a naïve (but sufficiently abstract) understanding of induction, but given that many people don't have a sufficiently abstract understanding of induction, I t... (read more)

elseif140

I think this critique undervalues the insight second order arithmetic gives for understanding the natural numbers.

If what you wanted from logic was a complete, self-contained account of mathematical reasoning then second order arithmetic is a punt: it purports to describe a set of rules for describing the natural numbers, and then in the middle says "Just fill in whatever you want here, and then go on". Landsburg worries that, as a consequence, we haven't gotten anywhere (or, worse, have started behind where we started, since no we need an accou... (read more)

4Anatoly_Vorobey
I disagree with your example: But set theory says the same thing. And set theory, unlike second-order arithmetic, is probably strong enough to formalize the large and complicated proof in the first place. Even if there are elements in the proof that go beyond ZFC (large cardinals etc.), mathematicians are likely to view them as additional assumptions on top of what they see as set theory. Consider a non-logician mathematician to whom the induction principle is not primarily a formal statement to be analyzed, but just, well, induction, a basic working tool. Given a large proof as you describe, ending in an application of induction. What would be the benefit, to the mathematician, of viewing that application as happening in second-order logic, as opposed to first-order set theory? Why would they want to use second-order anything? I don't see how that works, either. Let G be the arithmetical statement expressing the consistency of ZFC. There are models of set theory in which G is true, and models in which G is false. Are you saying that second-order arithmetic gives us a better way, a less ambiguous way, to study the truth of G? How would that work in practice? The way I see it, different models of set theory agree on what natural numbers are, but disagree on what subsets of natural numbers exist. This ambiguity is not resolved by second-order arithmetic; rather, it's swept under the carpet. The "unique" model "pinpointed" by it is utterly at the mercy of the same ambiguity of what the set of subsets of N is, and the ambiguity reasserts itself the moment you start studying the semantics of second-order arithmetic which you will do through model theory, expressed within set theory. So what is it that you have gained? To a Platonist, what you used was not the second order induction axiom; it was just the familiar principle of induction.
2Cyan
I object to the notion that the hypernaturals are bizarre. Down with ω-consistency! /geek
elseif10

I'm a fan of Enderton's "A Mathematical Introduction to Logic". It's short and very precisely written, which can make it a little difficult to learn from on its own, but together with a general familiarity with the subject and using wikipedia for additional examples elaboration, it should be perfect.

elseif00

Perhaps LessWrong is a place where I can say "Your question is wrong" without causing unintended offense. (And none is intended.)

Yes, for ω-consistency to even be defined for a theory it must interpret the language of arithmetic. This is a necessary precondition for the statement you quoted, and does not contradict it.

Work in PA, and take a family of statements P(n) where each P(n) is true but independent of PA, and not overly simple statements themselves---say, P(n) is "the function epsilon n in the fast growing hierarchy is a total funct... (read more)

0Incorrect
Thanks, can you recommend a textbook for this stuff? I've mostly been learning off Wikipedia. I can't find a textbook on logic in the lesswrong textbook list.
elseif00

ω-inconsistency isn't exactly the same thing as being false in the standard model. Being ω-inconsistent requires both that the theory prove all the statements P(n) for standard natural numbers n, but also prove that there is an n for which P(n) fails. Therefore a theory could be ω-consistent because it fails to prove P(n), even though P(n) is true in the standard model. So even if we could check ω-consistency, we could take PA, add an axiom T, and end up with an ω-consistent theory which nonetheless is not true in the standard model.

By the way, there ar... (read more)

0Incorrect
I thought for ω-consistency to even be defined for a theory it must interpret the language of arithmetic?
elseif60

Everyone seems to be taking the phrase "human Gödel sentence" (and, for that matter, "the Gödel sentence of a turing machine") as if its widely understood, so perhaps it's a piece of jargon I'm not familiar with. I know what the Gödel sentence of a computably enumerable theory is, which is the usual formulation. And I know how to get from a computably enumerable theory to the Turing machine which outputs the statements of that theory. But not every Turing machine is of this form, so I don't know what it means to talk about the Gödel ... (read more)

0Stuart_Armstrong
Entirely agree.