Eliezer, thank you for this clear explanation. I'm just now making the connection to your calculator example, which struck me as relevant if I could only figure out how. Now it's all fitting together.
How does this differ from personal preference? Or is it simply broader in scope? That is, if an individual's calculation includes "self-interest" and weighs it heavily, personal preference might be the result of the calculation, which fits inside your metamoral model, if I'm reading things correctly.
I'm going to need some help with this one.
It seems to me that the argument goes like this, at first:
Even this little bit creates a lot of questions. I've been following Eliezer's writings for the past little while, although I may well have missed some key point.
Why is this computation a 1-place function? Eliezer says at first "Here we are treating morality as a 1-place functio...
Richard, I don't know anything about moral theorists, but this series of posts has helped me understand my own beliefs better than anything I've ever read, and they've coalesced mostly while reading this post. "Meta" was a concept missing from my toolbox, at least in the case of morality, and Eliezer's pointing it out has been immensely productive for me.
behemoth, I think the point you make about the second generation is an important one. Because children are both irrational and bad at listening to their intuitions when it's inconvenient to do so...
Not hard at all, Caledonian.
Also, stop trolling. Offer some insight, or go away.
Another thing way to look at this idea of math being a tool that exists only in the mind has occurred to me:
Does addition happen outside the mind? What is something "plus" something else? If we've got a quantity of two sheep, and a quantity of three sheep, and they're standing next to each other, then we can consider the two quantities together, and count five sheep. But let's say a quantity of two sheep wander through a meadow until they come across a quantity of three sheep, and then stop. Where did the actual addition happen? Outside the mind, there are only quantities.
I think the problem I have with the math example, and it may be that this is extensible to morality, is this:
If I have a certain quantity of apples, or sheep, or whatever, my mind has a tool (a number) ready to identify some characteristic about that quantity (how many it is). But that's all that number is: a tool. A reference.
Eliezer is right in saying that the teacher's teaching "2+3=5" doesn't make it true any more than the teacher's teaching "2+3=6" makes it true. But that's not because two plus three "actually" equals fiv...
If you believe that there is any kind of stone tablet in the fabric of the universe, in the nature of reality, in the structure of logic - anywhere you care to put it - then what if you get a chance to read that stone tablet, and it turns out to say "Pain Is Good"? What then?
Well, Eliezer, since I can't say it as eloquently as you:
"Embrace reality. Hug it tight."
"It is always best to think of reality as perfectly normal. Since the beginning, not one unusual thing has ever happened."
If we find that Stone Tablet, we adjust our model accordingly.
Z. M. Davis: Thank you. I get it now.
Roland and Ian C. both help me understand where Eliezer is coming from. And PK's comment that "Reality will only take a single path" makes sense. That said, when I say a die has a 1/6 probability of landing on a 3, that means: Over a series of rolls in which no effort is made to systematically control the outcome (e.g. by always starting with 3 facing up before tossing the die), the die will land on a 3 about 1 in 6 times. Obviously, with perfect information, everything can be calculated. That doesn't mean that we can't predict the probability of...
It seems to me you're using "perceived probability" and "probability" interchangeably. That is, you're "defining" probability as the probability that an observer assigns based on certain pieces of information. Is it not true that when one rolls a fair 1d6, there is an actual 1/6 probability of getting any one specific value? Or using your biased coin example: our information may tell us to assume a 50/50 chance, but the man may be correct in saying that the coin has a bias--that is, the coin may really come up heads 80% of the...
"Is it not true that when one rolls a fair 1d6, there is an actual 1/6 probability of getting any one specific value?"
No. The unpredictability of a die roll or coin flip is not due to any inherent physical property of the objects; it is simply due to lack of information. Even with quantum uncertainty, you could predict the result of a coin flip or die roll with high accuracy if you had precise enough measurements of the initial conditions.
Let's look at the simpler case of the coin flip. As Jaynes explains it, consider the phase space for the c...
Eliezer, this explanation finally puts it all together for me in terms of the "computation". I get it now, I think.
On the other hand, I have a question. Maybe this indicates that I don't truly get it; maybe it indicates that there's something you're not considering. In any case, I would appreciate your explanation, since I feel so close to understanding what you've been saying.
When I multiply 19 and 103, whether in my head, or using a pocket calculator, I get a certain result that I can check: In theory, I can gather a whole bunch of pebbles, lay... (read more)