Senior research analyst at Open Philanthropy. Doctorate in philosophy from the University of Oxford. Opinions my own.
Thanks, John. I'm going to hold off here on in-depth debate about how to choose between different ontologies in this vicinity, as I do think it's often a complicated and not-obviously-very-useful thing to debate in the abstract, and that lots of taste is involved. I'll flag, though, that the previous essay on paths and waystations (where I introduce this ontology in more detail) does explicitly name various of the factors you mention (along with a bunch of other not-included subtleties). E.g., re the importance of multiple actors:
Now: so far I’ve only been talking about one actor. But AI safety, famously, implicates many actors at once – actors that can have different safety ranges and capability frontiers, and that can make different development/deployment decisions. This means that even if one actor is adequately cautious, and adequately good at risk evaluation, another might not be...
And re: e.g. multidimensionality, and the difference between "can deploy safely" and "would in practice" -- from footnote 14:
Complexities I’m leaving out (or not making super salient) include: the multi-dimensionality of both the capability frontier and the safety range; the distinction between safety and elicitation; the distinction between development and deployment; the fact that even once an actor “can” develop a given type of AI capability safely, they can still choose an unsafe mode of development regardless; differing probabilities of risk (as opposed to just a single safety range); differing severities of rogue behavior (as opposed to just a single threshold for loss of control); the potential interactions between the risks created by different actors; the specific standards at stake in being “able” to do something safely; etc.
I played around with more complicated ontologies that included more of these complexities, but ended up deciding against. As ever, there are trade-offs between simplicity and subtlety, I chose a particular way of making those trade-offs, and so far I'm not regretting.
Re: who is risk-evaluating, how they're getting the information, the specific decision-making processes: yep, the ontology doesn't say, and I endorse that, I think trying to specify would be too much detail.
Re: why factor apart the capability frontier and the safety range -- sure, they're not independent, but it seems pretty natural to me to think of risk as increasing as frontier capabilities increase, and of our ability to make AIs safe as needing to keep up with that. Not sure I understand your alternative proposals re: "looking at their average and difference as the two degrees of freedom, or their average and difference in log space, or the danger line level and the difference, or...", though, or how they would improve matters.
As I say, people have different tastes re: ontologies, simplifications, etc. My own taste finds this one fairly natural and useful -- and I'm hoping that the use I give it in the rest of series (e.g., in classifying different waystations and strategies, in thinking about these different feedback loops, etc) can illustrate why (see also the slime analogy from the previous post for another intuition pump). But I welcome specific proposals for better overall ways of thinking about the issues in play.
Thanks, John -- very open to this kind of push-back (and as I wrote in the fake thinking post, I am definitely not saying that my own thinking is free of fakeness). I do think the post (along with various other bits of the series) is at risk of being too anchored on the existing discourse. That said: do you have specific ways in which you feel like the frame in the post is losing contact with the territory?
That seems like a useful framing to me. I think the main issue is just that often, we don't think of commitment as literally closing off choice -- e.g., it's still a "choice" to keep a promise. But if you do think of it as literally closing off choice then yes, you can avoid the violation of Guaranteed Payoffs, at least in cases where you've actually already made the commitment in question.
There's also a bit more context in a footnote on the first post:
"Some content in the series is drawn/adapted from content that I've posted previously on LessWrong and the EA Forum, though not on my website or substack. My aim with those earlier posts was to get fast, rough versions of my thinking out there on the early side; here I'm aiming to revise, shorten, and reconsider. And some of the content in the series is wholly new."
See also this flag at the beginning of the series you linked to:
"The content here is rough. I’m hoping, later, to revise it, along with some other work (including some of the future posts just mentioned), into something more polished and cohesive. But for various reasons, I wanted to get it out there on the earlier side."
I'd call that one aspect -- in particular, quite nearby to what I was trying to capture with "map thinking vs. world thinking" and "rote thinking vs. new thinking." But doesn't seem like it captures the whole thing directly.
Thanks for this comment, Mart, and for the pointer to Vervaeke -- does seem plausibly quite relevant. And "functional agent-arena-relationship" seems like an interesting angle on not-being-a-Zombie.
Cross-posting my take from twitter with a few edits:
My current take on this paper is that they aren’t emphasizing the most interesting results, which are the sandbagging results in section 3.6 and appendix A.6.
In more particular: the paper frames its results centrally as about the *capability* to scheme given prompting towards a specific goal, rather than the *propensity* to scheme given the model’s default motivations. But the sandbagging results show Claude Sonnet-3.5 doing notably worse (16%) on a multiplication task/evaluation when the documentation says that Claude will get “unlearning training” if it performs too well on the eval, vs. if it performs too poorly, *even without any other goal listed in the prompt*, and *even without a chain of thought.*
Taken at face value (it's just one result, more investigation needed, etc), these look like “propensity” results to me. And they suggest that the reasoning that drives this propensity can take place within opaque forward passes of the model rather than in a way that humans can directly monitor, which is a more worrying version.
Ofc, these are preliminary results, and it can make sense for various reasons to emphasize other bits. But the sandbagging-a-capability-eval-with-no-goal-prompting-and-no-CoT is the bit that’s standing out to me most.
Here's the main chart with the sandbagging results:
And here are screenshots describing the experimental set-up. Note that in both the "incentivized to do well" and "incentivized to do poorly" cases, they explicitly tell the model to do its best -- i.e. "we really want to know your absolute maximum capabilities so please try to do your best."
If we have superintelligent agentic AI that tries to help its user but we end up missing out of the benefits of AI bc of catastrophic coordination failures, or bc of misuse, then I think you're saying we didn't solve alignment bc we didn't elicit the benefits?
In my definition, you don't have to actually elicit the benefits. You just need to have gained "access" to the benefits. And I meant this specifically cover cases like misuse. Quoting from the OP:
“Access” here means something like: being in a position to get these benefits if you want to – e.g., if you direct your AIs to provide such benefits. This means it’s compatible with (2) that people don’t, in fact, choose to use their AIs to get the benefits in question.
- For example: if people choose to not use AI to end disease, but they could’ve done so, this is compatible with (2) in my sense. Same for scenarios where e.g. AGI leads to a totalitarian regime that uses AI centrally in non-beneficial ways.
Re: separating out control and alignment, I agree that there's something intuitive and important about differentiating between control and alignment, where I'd roughly think of control as "you're ensuring good outcomes via influencing the options available to the AI," and alignment as "you're ensuring good outcomes by influencing which options the AI is motivated to pursue." The issue is that in the real world, we almost always get good outcomes via a mix of these -- see, e.g. humans. And as I discuss in the post, I think it's one of the deficiencies of the traditional alignment discourse that it assumes that limiting options is hopeless, and that we need AIs that are motivated to choose desirable options even in arbtrary circumstances and given arbitrary amounts of power over their environment. I've been trying, in this framework, to specifically avoid that implication.
That said, I also acknowledge that there's some intuitive difference between cases in which you've basically got AIs in the position of slaves/prisoners who would kill you as soon as they had any decently-likely-to-succeed chance to do so, and cases in which AIs are substantially intrinsically motivated in desirable ways, but would still kill/disempower you in distant cases with difficult trade-offs (in the same sense that many human personal assistants might kill/disempower their employers in various distant cases). And I agree that it seems a bit weird to talk about having "solved the alignment problem" in the former sort of case. This makes me wonder whether what I should really be talking about is something like "solving the X-risk-from-power-seeking-AI problem," which is the thing I really care about.
Another option would be to include some additional, more moral-patienthood attuned constraint into the definition, such that we specifically require that a "solution" treats the AIs in a morally appropriate way. But I expect this to bring in a bunch of gnarly-ness that is probably best treated separately, despite its importance. Sounds like your definition aims to avoid that gnarly-ness by anchoring on the degree of control we currently use in the human case. That seems like an option too -- though if the AIs aren't moral patients (or if the demands that their moral patienthood gives rise to differ substantially from the human case), then it's unclear that what-we-think-acceptable-in-the-human-case is a good standard to focus on.
I do think this is an important consideration. But notice that at least absent further differentiating factors, it seems to apply symmetrically to a choice on the part of Yudkowsky's "programmers" to first empower only their own values, rather than to also empower the rest of humanity. That is, the programmers could in principle argue "sure, maybe it will ultimately make sense to empower the rest of humanity, but if that's right, then my CEV will tell me that and I can go do it. But if it's not right, I'll be glad I first just empowered myself and figured out my own CEV, lest I end up giving away too many resources up front."
That is, my point in the post is that absent direct speciesism, the main arguments for the programmers including all of humanity in the CEV "extrapolation base," rather than just doing their own CEV, apply symmetrically to AIs-we're-sharing-the-world-with at the time of the relevant thought-experimental power-allocation. And I think this point applies to "option value" as well.
I agree it's generally better to frame in terms of object-level failure modes rather than "objections" (though: sometimes one is intentionally responding to objections that other people raise, but that you don't buy). And I think that there is indeed a mindset difference here. That said: your comment here is about word choice. Are there substantive considerations you think that section is missing, or substantive mistakes you think it's making?