All of Johannes Treutlein's Comments + Replies

I played around with this a little bit now. First, I correlated OOD performance vs. Freeform definition performance, for each model and function. I got a correlation coefficient of ca. 0.16. You can see a scatter plot below. Every dot corresponds to a tuple of a model and a function. Note that transforming the points into logits or similar didn't really help.

Next, I took one of the finetunes and functions where OOD performance wasn't perfect. I choose 1.75 x and my first functions finetune (OOD performance at 82%). Below, I plot the function values that th... (read more)

My guess is that for any given finetune and function, OOD regression performance correlates with performance on providing definitions, but that the model doesn't perform better on its own provided definitions than on the ground truth definitions. From looking at plots of function values, the way they are wrong OOD often looked more like noise or calculation errors to me rather than eg getting the coefficient wrong. I'm not sure, though. I might run an evaluation on this soon and will report back here.

3Johannes Treutlein
I played around with this a little bit now. First, I correlated OOD performance vs. Freeform definition performance, for each model and function. I got a correlation coefficient of ca. 0.16. You can see a scatter plot below. Every dot corresponds to a tuple of a model and a function. Note that transforming the points into logits or similar didn't really help. Next, I took one of the finetunes and functions where OOD performance wasn't perfect. I choose 1.75 x and my first functions finetune (OOD performance at 82%). Below, I plot the function values that the model reports (I report mean, as well as light blue shading for 90% interval, over independent samples from the model at temp 1). This looks like a typical plot to me. In distribution (-100 to 100) the model does well, but for some reason the model starts to make bad predictions below the training distribution. A list of some of the sampled definitions from the model: Unsurprisingly, when checking against this list of model-provided definitions, performance is much worse than when evaluating against ground truth. It would be interesting to look into more different functions and models, as there might exist ones with a stronger connection between OOD predictions and provided definitions. However, I'll leave it here for now.

How much time do you think there is between "ability to automate" and "actually this has been automated"? Are your numbers for actual automation, or just ability? I personally would agree to your numbers if they are about ability to automate, but I think it will take much longer to actually automate, due to people's inertia and normal regulatory hurdles (though I find it confusing to think about, because we might have vastly superhuman AI and potentially loss of control before everything is actually automated.)

4Erik Jenner
Good question, I think I was mostly visualizing ability to automate while writing this. Though for software development specifically I expect the gap to be pretty small (lower regulatory hurdles than elsewhere, has a lot of relevance to the people who'd do the automation, already starting to happen right now). In general I'd expect inertia to become less of a factor as the benefits of AI become bigger and more obvious---at least for important applications where AI could provide many many billions of dollars of economic value, I'd guess it won't take too long for someone to reap those benefits. My best guess is regulations won't slow this down too much except in a few domains where there are already existing regulations (like driving cars or medical things). But pretty unsure about that. I also think it depends on whether by "ability to automate" you mean "this base model could do it with exactly the right scaffolding or finetuning" vs "we actually know how to do it and it's just a question of using it at scale". For that part, I was thinking more about the latter.

I found this clarifying for my own thinking! Just a small additional point, in Hidden Incentives for Auto-Induced Distributional Shift, there is also the example of a Q learner that learns to sometimes take a non-myopic action (I believe cooperating with its past self in a prisoner's dilemma), without any meta learning.

1[anonymous]
Thanks for pointing this out! I will make a note of that in the main post.

Yes, one could e.g. have a clear disclaimer above the chat window saying that this is a simulation and not the real Bill Gates. I still think this is a bit tricky. E.g., Bill Gates could be really persuasive and insist that the disclaimer is wrong. Some users might then end up believing Bill Gates rather than the disclaimer. Moreover, even if the user believes the disclaimer on a conscious level, impersonating someone might still have a subconscious effect. E.g., imagine an AI friend or companion who repeatedly reminds you that they are just an AI, versus ... (read more)

My takeaway from looking at the paper is that the main work is being done by the assumption that you can split up the joint distribution implied by the model as a mixture distribution 

such that the model does Bayesian inference in this mixture model to compute the next sentence given a prompt, i.e., we have . Together with the assumption that  is always bad (the sup condition you talk about), this makes the whole approach with giving more and more evidence for  by stringing together bad se... (read more)

Some further thoughts on training ML models, based on discussions with Caspar Oesterheld:

  • I don't see a principled reason why one couldn't use one and the same model for both agents. I.e., do standard self-play training with weight sharing for this zero-sum game. Since both players have exactly the same loss function, we don't need to allow them to specialize by feeding in a player id or something like that (there exists a symmetric Nash equilibrium).
  • There is one problem with optimizing the objective in the zero-sum game via gradient descent (assuming we co
... (read more)

Regarding your last point 3., why does this make you more pessimistic rather than just very uncertain about everything?

3Lauro Langosco
It does make me more uncertain about most of the details. And that then makes me more pessimistic about the solution, because I expect that I'm missing some of the problems. (Analogy: say I'm working on a math exercise sheet and I have some concrete reason to suspect my answer may be wrong; if I then realize I'm actually confused about the entire setup, I should be even more pessimistic about having gotten the correct answer).

Why would alignment with the outer reward function be the simplest possible terminal goal? Specifying the outer reward function in the weights would presumably be more complicated. So one would have to specify a pointer towards it in some way. And it's unclear whether that pointer is simpler than a very simple misaligned goal.

Such a pointer would be simple if the neural network already has a representation of the outer reward function in weights anyway (rather than deriving it at run-time in the activations). But it seems likely that any fixed representati... (read more)

3Richard_Ngo
So I'm imagining the agent doing reasoning like: Misaligned goal --> I should get high reward --> Behavior aligned with reward function and then I'm hypothesizing that the whatever the first misaligned goal is, it requires some amount of complexity to implement, and you could just get rid of it and make "I should get high reward" the terminal goal. (I could imagine this being false though depending on the details of how terminal and instrumental goals are implemented.) I could also imagine something more like: Misaligned goal --> I should behave in aligned ways --> Aligned behavior and then the simplicity bias pushes towards alignment. But if there are outer alignment failures then this incurs some additional complexity compared with the first option. Or a third, perhaps more realistic option is that the misaligned goal leads to two separate drives in the agent: "I should get high reward" and "I should behave in aligned ways", and that the question of which ends up dominating when they clash will be determined by how the agent systematizes multiple goals into a single coherent strategy (I'll have a post on that topic up soon).  

I am not sure I understand. Are you saying that GPT thinks the text is genuinely from the future (i.e., the distribution that it is modeling contains text from the future), or that it doesn't think so? The sentence you quote is intended to mean that it does not think the text is genuinely from the future.

2Gurkenglas
I agree that it doesn't think the text is from the future. I am nitpicking a technical detail because the text I was line-commenting upon seemed confused. (How vexing to find this thread below the post, in the place for louder discussions!) Instead of conjecturing that it doesn't think the text is from the future, you should conjecture that it thinks the text is from the training data, because: 1. The latter implies the former. 2. We have technical reasons to believe the latter.

Thanks for your comment!

Regarding 1: I don't think it would be good to simulate superintelligences with our predictive models. Rather, we want to simulate humans to elicit safe capabilities. We talk more about competitiveness of the approach in Section III.

Regarding 3: I agree it might have been good to discuss cyborgism specifically. I think cyborgism is to some degree compatible with careful conditioning. One possible issue when interacting with the model arises when the model is trained on / prompted with its own outputs, or data that has been influence... (read more)

You are right, thanks for the comment! Fixed it now.

I like the idea behind this experiment, but I find it hard to tell from this write-up what is actually going on. I.e., what is exactly the training setup, what is exactly the model, which parts are hard-coded and which parts are learned? Why is it a weirdo janky thing instead of some other standard model or algorithm? It would be good if this was explained more in the post (it is very effortful to try to piece this together by going through the code). Right now I have a hard time making any inferences from the results.

Update: we recently discovered the performative prediction (Perdomo et al., 2020) literature (HT Alex Pan). This is a machine learning setting where we choose a model parameter (e.g., parameters for a neural network) that minimizes expected loss (e.g., classification error). In performative prediction, the distribution over data points can depend on the choice of model parameter. Our setting is thus a special case in which the parameter of interest is a probability distribution, the loss is a scoring function, and data points are discrete outcomes. Most re... (read more)

I think there should be a space both for in-progress research dumps and for more worked out final research reports on the forum. Maybe it would make sense to have separate categories for them or so.

I'm not sure I understand what you mean by a skill-free scoring rule. Can you elaborate what you have in mind?

3Vaniver
Sure, points from a scoring rule come both from 'skill' (whether or not you're accurate in your estimates) and 'calibration' (whether your estimates line up with the underlying propensity). Rather than generating the picture I'm thinking of (sorry, up to something else and so just writing a quick comment), I'll describe it: watch this animation, and see the implied maximum expected score as a function of p (the forecaster's true belief). For all of the scoring rules, it's a convex function with maxima at 0 and 1. (You can get 1 point on average with a linear rule if p=0, and only 0.5 points on average if p=0.5; for a log rule, it's 0 points and -0.7 points.) But could you come up with a scoring rule where the maximum expected score as a function of p is flat? If true, there's no longer an incentive to have extreme probabilities. But that incentive was doing useful work before, and so this seems likely to break something else--it's probably no longer the case that you're incentivized to say your true belief--or require something like batch statistics (since I think you might be able to get something like this by scoring not individual predictions but sets of them, sorted by p or by whether they were true or false). [This can be done in some contexts with markets, where your reward depends on how close the market was to the truth before, but I think it probably doesn't help here because we're worried about the oracle's ability to affect the underlying reality, which is also an issue with prediction markets!] To be clear, I'm not at all confident this is possible or sensible--it seems likely to me that an adversarial argument goes thru where as oracle I always benefit from knowing which statements are true and which statements are false (even if I then lie about my beliefs to get a good calibration curve or w/e)--but that's not an argument about the scale of the distortions that are possible. 

Thanks for your comment!

Your interpretation sounds right to me. I would add that our result implies that it is impossible to incentivize honest reports in our setting. If you want to incentivize honest reports when is constant, then you have to use a strictly proper scoring rule (this is just the definition of “strictly proper”). But we show for any strictly proper scoring rule that there is a function such that a dishonest prediction is optimal.

Proposition 13 shows that it is possible to “tune” scoring rules to make optimal predictions very close to h... (read more)

3Vaniver
Agreed for proper scoring rules, but I'd be a little surprised if it's not possible to make a skill-free scoring rule, and then get a honest prediction result for that. [This runs into other issues--if the scoring rule is skill-free, where does the skill come from?--but I think this can be solved by having oracle-mode and observation-mode, and being able to do honest oracle-mode at all would be nice.]

I think such a natural progression could also lead to something similar to extinction (in addition to permanently curtailing humanity's potential). E.g., maybe we are currently in a regime where optimizing proxies harder still leads to improvements to the true objective, but this could change once we optimize those proxies even more. The natural progression could follow an inverted U-shape.

E.g., take the marketing example. Maybe we will get superhuman persuasion AIs, but also AIs that protect us from persuasive ads and AIs that can provide honest reviews. ... (read more)

There is a chance that one can avoid having to solve ontology identification in general if one punts the problem to simulated humans. I.e., it seems one can train the human simulator without solving it, and then use simulated humans to solve the problem. One may have to solve some specific ontology identification problems to make sure one gets an actual human simulator and not e.g. a malign AI simulator. However, this might be easier than solving the problem in full generality.

Minor comment: regarding the RLHF example, one could solve the problem implicitl... (read more)

(I think Stockfish would be classified as AI in computer science. I.e., you'd learn about the basic algorithms behind it in a textbook on AI. Maybe you mean that Stockfish was non-ML, or that it had handcrafted heuristics?)

0Jeff Rose
My understanding is that starting in late 2020 with the release of Stockfish 12, Stockfish would probably be considered AI, but before that it would not be.  I am, of course, willing to change this view based on additional information. The original Alpha Zero- Stockfish match was in 2017, so if the above is correct, I think referring to Stockfish as non-AI makes sense.

Great post!

I like that you point out that we'd normally do trial and error, but that this might not work with AI. I think you could possibly make clearer where this fails in your story. You do point out how HLMI might become extremely widespread and how it might replace most human work. Right now it seems to me like you argue essentially that the problem is a large-scale accident that comes from a distribution shift. But this doesn't yet say why we couldn't e.g. just continue trial-and-error and correct the AI once we notice that something is going wrong.&... (read more)

2Leon Lang
Yes, after reflection I think this is correct. I think I had in mind a situation where with deployment, the training of the AI system simply stops, but of course, this need not be the case. So if training continues, then one either needs to argue stronger reasons why the distribution shift leads to a catastrophe (e.g., along the lines you argue) or make the case that the training signal couldn't keep up with the fast pace of the development. The latter would be an outer alignment failure, which I tried to avoid talking about in the text. 

Overall I agree that solutions to deception look different from solutions to other kinds of distributional shift. (Also, there are probably different solutions to different kinds of large distributional shift as well. E.g., solutions to capability generalization vs solutions to goal generalization.)

I do think one could claim that some general solutions to distributional shift would also solve deceptiveness. E.g., the consensus algorithm works for any kind of distributional shift, but it should presumably also avoid deceptiveness (in the sense that it would... (read more)

I like this post and agree that there are different threat models one might categorize broadly under "inner alignment". Before reading this I hadn't reflected on the relationship between them.

Some random thoughts (after an in-person discussion with Erik):

  • For distributional shift and deception, there is a question of what is treated as fixed and what is varied when asking whether a certain agent has a certain property. E.g., I could keep the agent constant but put it into a new environment, and ask whether it is still aligned. Or I could keep the environmen
... (read more)
2Erik Jenner
Thanks for the comments! I technically agree with what you're saying here, but one of the implicit claims I'm trying to make in this post is that this is not a good way to think about deception. Specifically, I expect solutions to deception to look quite different from solutions to (large) distributional shift. Curious if you disagree with that.

Great post!

Regarding your “Redirecting civilization” approach: I wonder about the competitiveness of this. It seems that we will likely build x-risk-causing AI before we have a good enough model to be able to e.g. simulate the world 1000 years into the future on an alternative timeline? Of course, competitiveness is an issue in general, but the more factored cognition or IDA based approaches seem more realistic to me.

Alternatively, we can try to be clever and “import” research from the future repeatedly. For instance we can first ask our model to produce r

... (read more)
2Adam Jermyn
Thanks! I'm not sure. My sense is that generative models have a huge lead in terms of general capabilities over ~everything else, and that seems to be where the most effort is going today. So unless something changes there I expect generative models to be the state of the art when we hit x-risk territory. That said, it's totally possible that the x-risk-causing generative model happens before the model that can simulate thousands of years of history. I'm not confident in this either way. One thing that gives me hope in favor of simulating long histories is that to some extent it's "just" a matter of more compute, and if we get promising results simulating short spans of history it might not be hard to justify a lot of spending on simulating longer stretches. And there's a bright spot there too: simulating longer times likely scales sub-linearly with amount of history simulated. If you have a dynamics model then simulating for twice as long costs double the compute. If you've got a more clever model that knows how to take shortcuts/compress the dynamics you can probably do better. I'm pretty concerned about this. I said a bit about this in the "No Fixed Points" section, but basically I think you have to do something to avoid fixed points, otherwise you get all sorts of world-ending optimization pressures. If you do that, you're not allowed any recursion where the model simulates itself, and then you get stuck with the problem of how to introduce future research into the past without making a malicious AGI the most likely explanation...

These issues of preferences over objects of different types (internal states, policies, actions, etc.) and how to translate between them are also discussed in the post Agents Over Cartesian World Models.

Your post seems to be focused more on pointing out a missing piece in the literature rather than asking for a solution to the specific problem (which I believe is a valuable contribution). Regardless, here is roughly how I would understand “what they mean”:

Let  be the task space,  the output space,  the model space,  our base objective, and  the mesa objective of the model for input . Assume that there exists some map  mapping internal objects to outputs by the model,... (read more)

1Johannes Treutlein
These issues of preferences over objects of different types (internal states, policies, actions, etc.) and how to translate between them are also discussed in the post Agents Over Cartesian World Models.

Thank you!

It does seem like simulating text generated by using similar models would be hard to avoid when using the model as a research assistant. Presumably any research would get “contaminated” at some point, and models might seize to be helpful without updating them on the newest research.

In theory, if one were to re-train models from scratch on the new research, this might be equivalent to the models updating on the previous models' outputs before reasoning about superrationality, so it would turn things into a version of Newcomb's problem with transpa... (read more)

2Adam Jermyn
Oh interesting. I think this still runs into the issue that you'll have instrumental goals whenever you ask the model to simulate itself (i.e. just the first step in the hierarchy hits this issue). I was imagining that we train the model to predict e.g. tomorrow's newspaper given today's. The fact that it's not just a stream of text but comes with time-stamps (e.g. this was written X hours later) feels important for making it simulate actual histories.

Thanks for your comment! I agree that we probably won't be able to get a textbook from the future just by prompting a language model trained on human-generated texts.

As mentioned in the post, maybe one could train a model to also condition on observations. If the model is very powerful, and it really believes the observations, one could make it work. I do think sometimes it would be beneficial for a model to attain superhuman reasoning skills, even if it is only modeling human-written text. Though of course, this might still not happen in practice.

Overall ... (read more)

Would you count issues with malign priors etc. also as issues with myopia? Maybe I'm missing something about what myopia is supposed to mean and be useful for, but these issues seem to have a similar spirit of making an agent do stuff that is motivated by concerns about things happening at different times, in different locations, etc.

E.g., a bad agent could simulate 1000 copies of the LCDT agent and reward it for a particular action favored by the bad agent. Then depending on the anthropic beliefs of the LCDT agent, it might behave so as to maximize this r... (read more)

If someone had a strategy that took two years, they would have to over-bid in the first year, taking a loss. But then they have to under-bid on the second year if they're going to make a profit, and--"

"And they get undercut, because someone figures them out."

I think one could imagine scenarios where the first trader can use their influence in the first year to make sure they are not undercut in the second year, analogous to the prediction market example. For instance, the trader could install some kind of encryption in the software that this company use... (read more)

I find this particularly curious since naively, one would assume that weight sharing implicitly implements a simplicity prior, so it should make optimization more likely and thus also deceptive behavior? Maybe the argument is that somehow weight sharing leaves less wiggle room for obscuring one's reasoning process, making a potential optimizer more interpretable? But the hidden states and tied weights could still be encoding deceptive reasoning in an uninterpretable way?

2Johannes Treutlein
I find this particularly curious since naively, one would assume that weight sharing implicitly implements a simplicity prior, so it should make optimization more likely and thus also deceptive behavior? Maybe the argument is that somehow weight sharing leaves less wiggle room for obscuring one's reasoning process, making a potential optimizer more interpretable? But the hidden states and tied weights could still be encoding deceptive reasoning in an uninterpretable way?
1ioannes
I'm considering doing Tucker Peck's Drug Free Sleep, but haven't tried it yet. Interview with Tucker on CBTi.
5Bird Concept
Swedish program called learningtosleep.se I think they just do whatever the standard sleep cbt thing is (at least that's what they say).

Wolfgang Spohn develops the concept of a "dependency equilibrium" based on a similar notion of evidential best response (Spohn 2007, 2010). A joint probability distribution is a dependency equilibrium if all actions of all players that have positive probability are evidential best responses. In case there are actions with zero probability, one evaluates a sequence of joint probability distributions such that and for all actions and . Using your notation of a probability matrix and a utility matrix, the expected utili

... (read more)

I would like to submit the following entries:

A typology of Newcomblike problems (philosophy paper, co-authored with Caspar Oesterheld).

A wager against Solomonoff induction (blog post).

Three wagers for multiverse-wide superrationality (blog post).

UDT is “updateless” about its utility function (blog post). (I think this post is hard to understand. Nevertheless, if anyone finds it intelligible, I would be interested in their thoughts.)

EDT doesn't pay if it is given the choice to commit to not paying ex-ante (before receiving the letter). So the thought experiment might be an argument against ordinary EDT, but not against updateless EDT. If one takes the possibility of anthropic uncertainty into account, then even ordinary EDT might not pay the blackmailer. See also Abram Demski's post about the Smoking Lesion. Ahmed and Price defend EDT along similar lines in a response to a related thought experiment by Frank Arntzenius.

3Stuart_Armstrong
Yes, this demonstrates that EDT is also unstable under self modification, just as CDT is. And trying to build an updateless EDT is exactly what UDT is doing.

Thanks for your answer! This "gain" approach seems quite similar to what Wedgwood (2013) has proposed as "Benchmark Theory", which behaves like CDT in cases with, but more like EDT in cases without causally dominant actions. My hunch would be that one might be able to construct a series of thought-experiments in which such a theory violates transitivity of preference, as demonstrated by Ahmed (2012).

I don't understand how you arrive at a gain of 0 for not smoking as a smoke-lover in my example. I would think the gain for not smoking is higher:

... (read more)
0abramdemski
Ah, you're right. So gain doesn't achieve as much as I thought it did. Thanks for the references, though. I think the idea is also similar in spirit to a proposal of Jeffrey's in him book The Logic of Decision; he presents an evidential theory, but is as troubled by cooperating in prisoner's dilemma and one-boxing in Newcomb's problem as other decision theorists. So, he suggests that a rational agent should prefer actions such that, having updated on probably taking that action rather than another, you still prefer that action. (I don't remember what he proposed for cases when no such action is available.) This has a similar structure of first updating on a potential action and then checking how alternatives look from that position.

From my perspective, I don’t think it’s been adequately established that we should prefer updateless CDT to updateless EDT

I agree with this.

It would be nice to have an example which doesn’t arise from an obviously bad agent design, but I don’t have one.

I’d also be interested in finding such a problem.

I am not sure whether your smoking lesion steelman actually makes a decisive case against evidential decision theory. If an agent knows about their utility function on some level, but not on the epistemic level, then this can just as well be made into a

... (read more)
2Diffractor
I think that in that case, the agent shouldn't smoke, and CDT is right, although there is side-channel information that can be used to come to the conclusion that the agent should smoke. Here's a reframing of the provided payoff matrix that makes this argument clearer. (also, your problem as stated should have 0 utility for a nonsmoker imagining the situation where they smoke and get killed) Let's say that there is a kingdom which contains two types of people, good people and evil people, and a person doesn't necessarily know which type they are. There is a magical sword enchanted with a heavenly aura, and if a good person wields the sword, it will guide them do heroic things, for +10 utility (according to a good person) and 0 utility (according to a bad person). However, if an evil person wields the sword, it will afflict them for the rest of their life with extreme itchiness, for -100 utility (according to everyone). good person's utility estimates: * takes sword * I'm good: 10 * I'm evil: -90 * don't take sword: 0 evil person's utility estimates: * takes sword * I'm good: 0 * I'm evil: -100 * don't take sword: 0 As you can clearly see, this is the exact same payoff matrix as the previous example. However, now it's clear that if a (secretly good) CDT agent believes that most of society is evil, then it's a bad idea to pick up the sword, because the agent is probably evil (according to the info they have) and will be tormented with itchiness for the rest of their life, and if it believes that most of society is good, then it's a good idea to pick up the sword. Further, this situation is intuitively clear enough to argue that CDT just straight-up gets the right answer in this case. A human (with some degree of introspective power) in this case, could correctly reason "oh hey I just got a little warm fuzzy feeling upon thinking of the hypothetical where I wield the sword and it doesn't curse me. This is evidence that I'm good,
0abramdemski
Excellent example. It seems to me, intuitively, that we should be able to get both the CDT feature of not thinking we can control our utility function through our actions and the EDT feature of taking the information into account. Here's a somewhat contrived decision theory which I think captures both effects. It only makes sense for binary decisions. First, for each action you compute the posterior probability of the causal parents for each decision. So, depending on details of the setup, smoking tells you that you're likely to be a smoke-lover, and refusing to smoke tells you that you're more likely to be a non-smoke-lover. Then, for each action, you take the action with best "gain": the amount better you do in comparison to the other action keeping the parent probabilities the same: Gain(a)=E(U|a)−E(U|a,do(¯a)) (E(U|a,do(¯a)) stands for the expectation on utility which you get by first Bayes-conditioning on a, then causal-conditioning on its opposite.) The idea is that you only want to compare each action to the relevant alternative. If you were to smoke, it means that you're probably a smoker; you will likely be killed, but the relevant alternative is one where you're also killed. In my scenario, the gain of smoking is +10. On the other hand, if you decide not to smoke, you're probably not a smoker. That means the relevant alternative is smoking without being killed. In my scenario, the smoke-lover computes the gain of this action as -10. Therefore, the smoke-lover smokes. (This only really shows the consistency of an equilibrium where the smoke-lover smokes -- my argument contains unjustified assumption that smoking is good evidence for being a smoke lover and refusing to smoke is good evidence for not being one, which is only justified in a circular way by the conclusion.) In your scenario, the smoke-lover computes the gain of smoking at +10, and the gain of not smoking at 0. So, again, the smoke-lover smokes. The solution seems too ad-hoc to really

Imagine that Omega tells you that it threw its coin a million years ago, and would have turned the sky green if it had landed the other way. Back in 2010, I wrote a post arguing that in this sort of situation, since you've always seen the sky being blue, and every other human being has also always seen the sky being blue, everyone has always had enough information to conclude that there's no benefit from paying up in this particular counterfactual mugging, and so there hasn't ever been any incentive to self-modify into an agent that would pay up ... and s

... (read more)

Thanks for the reply and all the useful links!

It's not a given that you can easily observe your existence.

It took me a while to understand this. Would you say that for example in the Evidential Blackmail, you can never tell whether your decision algorithm is just being simulated or whether you're actually in the world where you received the letter, because both times, the decision algorithms receive exactly the same evidence? So in this sense, after updating on receiving the letter, both worlds are still equally likely, and only via your decision do yo... (read more)

Load More