My point isn't that it is unreasonable to use symmetric (/antisymmetric) wavefunctions until we discover something that requires us to use a more complicated model. My objection is to an error in thinking that holds that such potential future discoveries are a-priori impossible. I'm with philosopher Bob on this one.
That is a great explanation. Thanks
I think quantum physicists here are making the same mistake that lead to the Gibbs paradox in classical phyiscs. Of course, my textbook in classical thermodynamics tried to sweep the Gibbs paradox under the quantum rug, and completely missed the point of what it was telling us about the subjective nature of classical entropy. Quantum physics is another deterministic reversible state-machine, so I don't see why it is different in principle from a "classical world".
While it is true that a wavefunction or something very much like it must be what the...
I have a counter-hypothesis: If the universe did distinguish between photons, but we didn't have any tests which could distinguish between photons, what this physically means is that our measuring devices, in their quantum-to-classical transitions (yes, I know this is a perception thing in MWI), are what is adding the amplitudes before taking the squared modulus. Our measurers can't distinguish, which is why we can get away with representing the hidden "true wavefunction" (or object carrying similar information) with a symmetric wavefunction. If ...
(I don't claim to be using my notes to any great effect, but this is what I do with them):
To me, I've noticed that I seldom actually use my notes as a reference. When I need to refer to something, I go to a place in a book somewhere. Rather, during a lecture, my notebook for the class seems to function more as a way to keep me paying attention to the lecturer, and to run various complicated pieces of information (equations, etc) across my mind. (Okay, I do sort of refer to these during exam study, but the books tend to be more legible).
I also do a lot of m...
I've never understood why explaining the Born Rule is less of a problem for any of the other interpretations of QP than it is for MWI. Copenhagen, IIRC, simply asserts it as an axiom. (Rather, it seems to me that MWI is one of the few that even tries to explain it!)
The problem that I've always had with the "utility monster" idea is that it's a misuse of what information utility functions actually encode.
In game theory or economics, a utility function is a rank ordering of preferred states over less preferred states for a single agent (who presumably has some input he can adjust to solve for his preferred states). That's it. There are no "global" utility functions or "collective" utility measures that don't run into problems when individual goals conflict.
Given that an agent's utility fu...
Hmm. In a certain sense, is these sufficient conditions to actually define an organization with boundaries?
I don't think many of us have ever seen the outside of that university. :-P
Contrast this to the notion we have in probability theory, of an exact quantitative rational judgment. If 1% of women presenting for a routine screening have breast cancer, and 80% of women with breast cancer get positive mammographies, and 10% of women without breast cancer get false positives, what is the probability that a routinely screened woman with a positive mammography has breast cancer? 7.5%. You cannot say, "I believe she doesn't have breast cancer, because the experiment isn't definite enough." You cannot say, "I believe she ... (read more)