It also happens to me when I got to solve a problem that many have and realize in retrospetct that it was a combination of luck, knowing the right people and skills that you don't know how to transfer, possibly because they are genetic traits. It must be frustrating to hear, after a question like "how have you conquered your social anxiety?", the condensed answer "mostly luck"
On the other hand, it makes you think when you realized how much these kinds of social status booster have permeated every step of the hierarchical ladder of any large organization... and yet, somehow, things still work out
There is, at least at a mathematical / type theoretic level.
In intuitionistic logic, is translated to , which is the type of processes that turn an element of into an element of , but since is empty, the whole is absurd as long as is istantiated (if not, then the only member is the empty identity). This is also why constructively but not
Closely related to constructive logic is topology, and indeed if concepts are open set, the logical complement is not a ...
One thing to remember when talking about distinction/defusion is that it's not a free operation: if you distinguish two things that you previously considered the same, you need to store at least a bit of information more than before. That is something that demands effort and energy. Sometimes, you need to store a lot more bits. You cannot simply become superintelligent by defusing everything in sight.
Sometimes, making a distinction is important, but some other times, erasing distinctions is more important. Rationality is about creating and erasing di...
Yeah. Probably the reason why e.g. the experience of a raw sound and the interpretation of that sound are fused together by default, is that normally it's only the interpretation we care about, and we need to be able to react to it quickly if it carries any urgent information. I made a similar observation in the essay that Abram is referencing:
...Cognitive fusion isn’t necessarily a bad thing. If you suddenly notice a car driving towards you at a high speed, you don’t want to get stuck pondering about how the feeling of danger is actually a mental construct p
I don't think you need the concept of evidence. In Bayesian probability, the concept of evidence is equivalent to the concept of truth; both in the sense that P(X|X) = 1, whatever you consider evidence is true, but also P(X) = 1 --> P(A /\ X) = P(A|X), you can consider true sentences as evidence without changing anything else.
Add to this that good rationalist practice is to never assume that anything is P(A) = 1, so that nothing is actually true or actually an evidence. You can do epistemology exclusively in the hypotethical: what happens if I consider this true? And then derive consequences.
Well, I share the majority of your points. I think that in 30 years millions of people will try to relocate in more fertile areas. And I think that not even the firing of the clathrate gun will force humans to coordinate globally. Although I am a bit more optimist about technology, the actual status quo is broken beyond repair
The fact is surprising when coupled with the fact that particles do not have a definite spin direction before you measure it. The anti-correlation is maintained non-locally, but the directions are decided by the experiment.
A better example is: take two spheres, send them far away, then make one sphere spin in any orientation that you want. How much would you be surprised to learn that the other sphere spins with the same axis in the opposite directions?
How probable is that someone knows their internal belief structure? How probable is that someone who knows their internal belief structure tells you that truthfully instead of using a self-serving lie?
The causation order in the scenario is important. If the mother is instantly killed by the truck, then she cannot feel any sense of pleasure after the fact. But if you want to say that the mother feels the pleasure during the attempt or before, then I would say that the word "pleasure" here is assuming the meaning of "motivation", and the points raised by Viliam in another comment are valid, it becomes just a play on words, devoid of intrinsic content.
So far, Bayesian probability has been extended to infinite sets only as a limit of continuous transfinite functions. So I'm not quite sure of the official answer to that question.
On the other hand, what I know is that even common measure theory cannot talk about the probability of a singleton if the support is continuous: no sigma-algebra on supports the atomic elements.
And if you're willing to bite the bullet, and define such an algebra through the use of a measurable cardinal, you end up with an ultrafilter that allows you to define ...
Under the paradigm of probability as extended logic, it is wrong to distinguish between empirical and demonstrative reasoning, since classical logic is just the limit of Bayesian probability with probabilities 0 and 1.
Besides that, category theory was born more than 70 years ago! Sure, very young compared to other disciplines, but not *so* young. Also, the work of Lawvere (the first to connect categories and logic) began in the 70's, so it dates at least forty years back.
That said, I'm not saying that category theory cannot in principle be used to reason about reasoning (the effective topos is a wonderful piece of machinery), it just cannot say that much right now about Bayesian reasoning
Yeah, my point is that they aren't truth values per se, not intuitionistic or linear or MVs or anything else
I've also dabbled into the matter, and I have two observation:
The way it's used in the set theory textbooks I've read is usually this:
So, there is indeed the assumption of a kind of infinite process before th...
> Transfinite induction does feel a bit icky in that finite prooflines you outline a process that has infinitely many steps. But as limits have a similar kind of thing going on I don't know whether it is any ickier.
Well, transfinite induction / recursions is reduced to (at least in ZF set theory) the existence of an infinite set and the Replacement axioms (a class function on a set is a set). I suspect you don't trust the latter.
The first link in the article is broken...
Obviously, only the wolves that survive.
Beware of the selection bias: even if veterans show more productivity, it could just be because the military training has selected those with higher discipline
The diagram at the beginning is very interesting. I'm curious about the arrow from relationship to results... care to explain? It refers to joint works or collaborations?
On the other hand, it's not surprising to me that AI alignment is a field that requires much more research and math than software writing skills... the field is completely new and not very well formalized yet, probably your skill set is misaligned with the need of the market
Good point about the misaligned skillset.
Relationships to results can take many forms.
This only lists the receiving side, wh
...> The first thing that you must accept in order to seek sense properly is the claim that minds actually make sense
This is somewhat weird to me. Since Kahneman & Tverski, we know that system 2 is mostly good at rationalizing the actions taken by system 1, to create a self-coherent narrative. Not only thus minds generally don't make any sense, my minds in general lacks any sense. I'm here just because my system 1 is well adjusted to this modern environment, I don't *need* to make any sense.
From this perspective, "making sense" appears to be a tiring and pointless exercise...
Isn't "just the right kind of obsession" a natural ability? It's not that you can orient your 'obsessions' at will...
Two of my favorite categories show that they really are everywhere: the free category on any graph and the presheaves of gamma.
The first: take any directed graph, unfocus your eyes and instead of arrows consider paths. That is a category!
The second: take any finite graph. Take sets and functions that realize this graph. This is a category, moreover you can make it dagger-compact, so you can do quantum mechanics with it. Take as the finite graph gamma, which is just two vertex with two arrows between them. Sets and functions that realize this graph are... any graph! So, CT allows you to do quantum mechanics with graphs.
Amazing!
Lambda calculus is though the internal language of a very common kind of category, so, in a sense, category theory allows lambda calculus to do computations not only with functions, but also sets, topological spaces, manifolds, etc.
While I share your enthusiasm toward categories, I find suspicious the claim that CT is the correct framework from which to understand rationality. Around here, it's mainly equated with Bayesian Probability, and the categorial grasp of probability or even measure is less than impressive. The most interesting fact I've been able to dig up is that the Giry monad is the codensity monad of the inclusion of convex spaces into measure spaces, hardly an illuminating fact (basically a convoluted way of saying that probabilities are the most general ways ...
The difference between the two is literally a single summation, so... yeah?
I'd like to point out a source of confusion around Occam's Razor that I see you're falling for, dispelling it will make things clearer: "you should not multiplicate entities without necessities!". This means that Occam's Razor helps decide between competing theories if and only if they have the same explanation and predictive power. But in the history of science, it was almost never the case that competing theories had the same power. Maybe it happened a couple of times (epicycles, the Copenhagen interpretation), but in all ot...
I arrived at the same conclusion when I tried to make sense of the Metaethics Sequence. My summary of Eliezer's writings is: "morality is a bunch of mental computations shared between most human beings". Morality thus grew out of our evolutive history, and it should not be surprising that in extreme situations it might be incoherent or maladaptive.
Only if you believe that morality should be like systematic and universal and coherent, then you can say that extreme examples are uncovering something interesting about peoples' morality.
Otherwise, extreme situations are as interesting as saying that people cannot mentally factor long numbers.
First of all, the community around LW2.0 can only be loosely associated to a movement: I don't think there's anyone that explicitly endorses *every* technique or theory appeared here. LW is not CFAR, is not the Alignment forum, etc. So I would caution against enticing someone into LW by saying that the community supports this or that technique.
The main advantage of rationality, in its present stage, is defensive: if you're aspiring to be rational, you wouldn't waste time attending religious gatherings that you despise; you wouldn't...
In Foerster's paper, he links the increase in productivity linearly with the increase in population. But Scott has also proposed that the rate of innovation is slowing down, due to a logarithmic increase of productivity from population. So maybe Foerster's model is still valid, and 1960 is only the year where we exhausted the almost linear part of progress (the "low hanging fruits").
Perhaps nowadays we combine the exponential growth of population from population with the logarithmic increase in productivity, to get the linear economic growth we see.
Algebraic topology is the discipline that studies geometries by associating them with algebraic objects (usually, groups or vector spaces) and observing how changing the underlying space affects the related algebras. In 1941, two mathematicians working in that field sought to generalize a theorem that they discovered, and needed to show that their solution was still valid for a larger class of spaces, obtained by "natural" transformations. Natural, at that point, was a term lacking a precise definition, and only meant something like "avoidin...
Is it really quite different, besides halo effect? It strongly depends on the detail, though if the two say the exact same thing, how are things different?
The concept of "fake framework", elucidated in the original post, to me it seems one of a model of reality that hides some complexity, sometimes even to the point of being very wrong, but that is nonetheless useful because it makes some other complex area manageable.
On the other hand, when I read the quotes you presented, I see a rich tapestry of metaphors and jargon, of which the proponent himself says that they can be wrong... but I fail completely to see what part of reality they make manageable. These frameworks seems to just add complexity t...
I'm sorry, but you cannot really learn anything from one example. I'm happy that your parents are faring well in their marriage, but if they didn't would you have learned the same thing?
I've consulted a few statistics on arranged marriage, and they all are:
The latter part is somewhat surprising for a Westerner, but given what you say, the same should be said for an Indian coming from your background.
The only conclusion I can draw fairly conclusively...
I'd agree that the null hypothesis (most common mechanisms work equally well) probably applies in the marriage game. I don't think Squidious was making a claim that arranged marriages are better (and I note that Squidious isn't using their parents to arrange a mate), just a claim that it can work pretty well.
Also, a less-explicit claim that many western narratives about love and marriage are misleading, in that they focus too strongly on finding a perfect match, and not enough on creating and maintaining a bond with a good-enough match. I ...
Are you familiar with the concept of fold/unfold? Folds are functions that consume structures and produce values, while unfolds do the opposite. The composition of an unfold plus a fold is called a hylomorphism, of which the factorial is a perfect example: the unfold creates a list from 1 to n, the fold multiplies together the entire list. Your section on the "two-fold recursion" is a perfect description of a hylomorphism: you take a goal, unfold it into a plan composed of a list of micro-steps, then you fold it by executing each one of the micro-steps in order.
Luke already wrote that there are at least four factors that feed motivation, and the expectation of success is only one of them. No amount of expectancy can increment drive if other factors are lacking, and as Eliezer notice, it's not sane to expect only one factor to be 10x the others so that it alone powers the engine.
What Eliezer is asking is basicall if anyone has solved the basic coordination problem of mankind, and I think he knows very well that the answer to his question is no. Also, because we are operating in a relatively small mindspace (h...
Venture Capital seems to be quite successful at finding startups to fund where the founder of the company has a chance of success of less then 30% and the founder still puts in incredibly hard work.
Most people aren't startup founders but there are many people who want to fund startups and are okay with success chances of less then 30%.
There are a lot of coordination problems whereby you need to get people to get people do to things that are not in their own interest that you could also call "the basic coordination problem of mankind".
Re: the third point, I think it's important to differentiate between and , where is the true prediction, that is what actually happens when an agent performs the action .
is simply the outcome the agent is aiming at, while is the outcome the agent eventually gets. So maybe it's more interesting a measure of similarity in , from which you can compare the two.
Let's say that is the set of available actions and is the set of consequences. is then the set of predictions, where a single prediction associates to every possible action a consequence. is then a choice operator, that selects for each prediction an action to take.
What we have seen so far:
I wonder if there are any plausible examples of this type where the constraints don't look like ordering on B and search on A.
Yes, as I shown in my post, such operators must know at least an element of one of the domains of the function. If it knows at least an element of A, a constant function on that element has the right type. Unfortunately, it's not much interesting.
It's interesting to notice that there's nothing with that type on hoogle (Haskell language search engine), so it's not the type of any common utility.
On the other hand, you can still say quite a bit on functions of that type, drawing from type and set theory.
First, let's name a generic function with that type . It's possible to show that k cannot be parametric in both types. If it were, would be valid, which is absurd ( has an element!). It' also possible to show that if k is not parametric in one type, it...
The difference would be that I'm doing it more for myself than for those out there, because I don't expect my youtube video to get out much.
I also don't know if I'll get some attention, I'm doing that entirely for myself: to leave a legacy, to look back and say that I too did something to raise the sanity waterline.
My biggest hurdle currently is video editing.
My motto: "think big, act small, move quickly". I know that my first videos will suck, I've prepared to embrace suckiness and plunge forward anyway.
Honestly, I'm not sure how explaining Bayesian thinking will help people with understanding media claims.
Sometimes important news are based entirely on the availability bias or the base rate fallacy: knowing them is important to cultivate a critical view of media. To understanding why they are wrong you need probabilistic reasoning. But media awareness is just an excuse, a hook to introduce Bayesian thinking, which will allow me to also talk about how to construct a critical view of science.
These are all excellent tips, thank you!
A much, much easier think that still works is P(sunrise) = 1, which I expect is what ancient astronomers felt about.
That entirely depends on your cosmological model, and in all cosmological models I know, the sun is a definite and fixed object, so usually
From what I've understood of the white paper, there's no transaction fee because, instead of rewarding active nodes like in the blockchain, the Tangle punishes inactive nodes. So when a node performes few transactions, other nodes tends to disconnect from it and in the long run an inactive node will be dropped entirely.
On the other hand, a node has only a partial copy of the entire Tangle at each time, so it is possible to keep it small even when the total volume is large.
Economically, I don't know if switching from incentives to partecipate to punishments for leaving makes sense.
With the magic of probability theory, you can convert one into the other. By the way, you yourself should search for evidence that you're wrong, as any honest intellectual would do.
This might be a minor or a major nitpick, depending on your point of view: Laplace rule works only if the repeated trials are thought to be independent of one another. That is why you cannot use it to predict sunrise: even without accurate cosmological model, it's quite clear that the ball of fire rising up in the sky every morning is always the same object. But what prior you use after that information is another story...
This is a standard prediction since the unconscious was theorized more than a century ago, so unfortunately it's not good evidence that the model is correct. Unfortunately, if what you've written is the only things that the list has to say, then I would say that no, this is not worth pursuing.
In a vein similar to Erfeyah's comment, I think that your model needs to be developed much more. For example, what predictions does it make that are notably different from other psychological models? It's just an explanation that feels too "overfitted".
I should have written "algebraic complement", which becomes logical negation or set-theoretic complement depending on the model of the theory.
Anyway, my intuition on why open sets are an interesting model for concepts is this: "I know when I see it" seems to describe a lot of the way we think about concepts. Often we don't have a precise definition that could argue all the edge case, but we pretty much have a strong intuition when a concept does apply. This is what happens to recursively enumerable sets: if a number belongs to a R.E. set, you will find out... (read more)