All of QSED's Comments + Replies

QSED41

I'm skeptical, but I'd love to be convinced. I'm not sure that it's necessary to make interpretability scale, but it definitely strikes me as a potential trump card that would allow interpretability research to keep pace with capabilities research.

Here are a couple relatively unsorted thoughts (Keep in mind that I'm not a mathematician!):

  • Deep learning as a field isn't exactly known for its rigor. I don't know of any rigorous theory that isn't as you say purely 'reactive', with none of it leading to any significant 'real world' results. As far as I can tell
... (read more)
2carboniferous_umbraculum
Thanks very much for the comments I think you've asked a bunch of very good questions. I'll try to give some thoughts: I think I kind of share your general concern here and I’m uncertain about it. I kind of agree that it seems like people had been trying for a while to figure out the right way to think about deep learning mathematically and that for a while it seemed like there wasn’t much progress. But I mean it when I say these things can be slow. And I think that the situation is developing and has changed - perhaps significantly - in the last ~5 years or so, with things like the neural tangent kernel, the Principles of Deep Learning Theory results and increasingly high-quality work on toy models. (And even when work looks promising, it may still take a while longer for the cycle to complete and for us to get ‘real world’ results back out of these mathematical points of view, but I have more hope than I did a few years ago). My current opinion is that certain aspects of interpretability will be more amenable to mathematics than understanding DNN-based AI as a whole .     I think basically your worries are sound. If what one is doing is something like ‘technical work aimed at understanding how NNs work’ then I don’t see there as being much distinction between capabilities and alignment ; you are really generating insights that can be applied in many ways, some good some bad (and part of my point is you have to be allowed to follow your instincts as a scientist/mathematician in order to find the right questions). But I do think that given how slow and academic the kind of work I’m talking about is, it’s neglected by both a) short timelines-focussed alignment people and b) capabilities people.     Hmm, that's interesting. I'm not sure I can say how likely it is one would go in the correct direction. But in my experience the idea that 'possible future applications' is one of the motivations for mathematicians to do 'blue sky' research is basically not quite ri