All of sophist's Comments + Replies

sophist00

Very interesting! But I have to read up on the Appendix A4 I think to fully appreciate it...I will come back if I change my mind after it! :-)

My own, current, thoughts are like this: I would bet on the ball being white up to some ratio...if my bet was $1 and I could win $100 I would do it for instance. The probability is simply the border case where ratio between losing and winning is such that I might as well bet or not do it. Betting $50 I would certainly not do. So I would estimate the probability to be somewhere between 1 and 50%...and somewhere there ... (read more)

sophist00

There is further discussion of this in Appendix C; will this be discussed in connection with Chapter 1, or at some later time in the sequence? For example, in Appendix C, it turns out that desideratum 1 subdivides into two other axioms: transitivity, and universal comparability. The first one makes sense, but the second one doesn't seem as compelling to me.

It is indeed an extremely interesting question! Perhaps it would be wiser to use complex numbers for instance.

But intuitively it seems very likely that if you tell me two different propositions, that ... (read more)

3kmccarty
Perhaps it might be wiser to use measures (distributions), or measures on spaces of measures, or iterate that construction indefinitely. (The concept of hyperpriors seems to go in this direction, for example.) Consider the following propositions. P1: The recently minted U.S. quarter I just vigorously flipped into the air landed heads on the floor. P2: A ball pulled from an unspecified urn containing an unspecified number of balls is white. P3(x): The probability of P2 is x Part of the problem is the laxness in specifying the language, as I mentioned. For example, if the language we use is rich enough to support self-referring interpretations, then it may not even be possible to coherently assign a truth value--or any other probability, or to know whether that is possible. But even ruling out Goedelian potholes in the landscape and uncountably infinite families of propositions, the contrast between P1 and P2 is problematic. P1 is backed up by a vast trove of background knowledge and evidence, and our confidence in asserting Prob(P1) = 1/2 is very strong. On the other hand, background knowledge and evidence about P2 is virtually nil. It is reasonable as a matter of customary usage to assume the number of balls in the urn is finite, and thus the probability of P1 is a rational number, but until you start adding in more assumptions and evidence, one's confidence in Prob(P2) < x for any particular real number x seems typically to be very much lower than for P1. Summarizing one's state of knowledge about these two propositions onto the same scale of reals between 0 and 1 seems to ignore an awful lot that we know about the relative state of knowledge vs. ignorance with respect to P1 and P2. An awful lot of knowledge is being jettisoned because it won't fit into this scheme of definite real numbers. To make the claim Prob(P2) = 1/2 (or any other definite real number you want to name) just does not seem like the same kind of thing as the claim Prob(P1) = 1/2. It feels
sophist00

Great! I'm looking forward to this! :)

sophist20

I'm a little late, but I'm in!

1Morendil
No problem. :) Please see the update and, if you're interested in live meetings, register your preferred times on the spreadsheet linked there.