Group coset

Written by Patrick Stevens last updated

Given a subgroup of group , the left cosets of in are sets of the form , for some . This is written as a shorthand.

Similarly, the right cosets are the sets of the form .

Examples

Properties

  • The left cosets of in partition . (Proof.)
  • For any pair of left cosets of , there is a bijection between them; that is, all the cosets are all the same size. (Proof.)

Why are we interested in cosets?

Under certain conditions (namely that the subgroup must be normal), we may define the quotient_group, a very important concept; see the page on "left cosets partition the parent group" for a glance at why this is useful.

Additionally, there is a key theorem whose usual proof considers cosets (Lagrange's theorem) which strongly restricts the possible sizes of subgroups of , and which itself is enough to classify all the groups of order for prime. Lagrange's theorem also has very common applications in number_theory, in the form of the Fermat-Euler theorem.