What I'm trying to figure out is, how to I determine whether a source I'm looking at is telling the truth? For an example, let's take this page from Metamed: http://www.metamed.com/vital-facts-and-statistics
At first glance, I see some obvious things I ought to consider. It often gives numbers for how many die in hospitals/year, but for my purposes I ought to interpret it in light of how many hospitals are in the US, as well as how many patients are in each hospital. I also notice that as they are trying to promote their site, they probably selected the data that would best serve that purpose.
So where do I go from here? Evaluating each source they reference seems like a waste of time. I do not think it would be wrong to trust that they are not actively lying to me. But how do I move from here to an accurate picture of general doctor competence?
Yeah, I don't think you can do anything with this sort of data. And even if you had more data, I'm not sure whether you could conclude much of anything - almost identical percentages are always going to be highly likely, even if you go from a sample of 9 to a sample of 47000 or whatever. I'll illustrate. Suppose instead of being something useless like fraction of expenditure, your 1970s datapoint was exactly 100 projects, 49 of which were classified A, 29 of which were classified B, etc (we interpret the percentages as frequencies and don't get any awkward issues of "the average person has 1.9 arms"); and we took the mean and then estimated the $29b datapoint as having the same mean per project so we could indeed estimate that it was a sample of $37bn, and so the second sample was 490 times bigger (49k / 100), so when we look at A being 47% in the first sample we have n=47 projects, but when we look at A being 46% in the second sample, we this time have an n of 46*490=22540 projects. Straightforward enough, albeit an exercise in making stuff up.
So, with a sample 490 times larger, does differing by a percent or two offer any reason to reject the null that they have the same underlying distributions? No, because they're still so similar:
I don't see why I should give up just because what I've got isn't convenient to work with. The data is what it is, I want to use it in a Bayesian update of my prior probabilities that the 1995 data is kosher or made up.
Intuitively, the existence of categories at 2% and 3% make the conclusion clear. If the 1995 data isn't made up, then it is very rare that a project falls into one of these categories at all - respectively 1/50 and 1/30 chances. So the chance that our small sample of 9 project... (read more)