"What's the worst that can happen?" goes the optimistic saying. It's probably a bad question to ask anyone with a creative imagination. Let's consider the problem on an individual level: it's not really the worst that can happen, but would nonetheless be fairly bad, if you were horribly tortured for a number of years. This is one of the worse things that can realistically happen to one person in today's world.
What's the least bad, bad thing that can happen? Well, suppose a dust speck floated into your eye and irritated it just a little, for a fraction of a second, barely enough to make you notice before you blink and wipe away the dust speck.
For our next ingredient, we need a large number. Let's use 3^^^3, written in Knuth's up-arrow notation:
- 3^3 = 27.
- 3^^3 = (3^(3^3)) = 3^27 = 7625597484987.
- 3^^^3 = (3^^(3^^3)) = 3^^7625597484987 = (3^(3^(3^(... 7625597484987 times ...)))).
3^^^3 is an exponential tower of 3s which is 7,625,597,484,987 layers tall. You start with 1; raise 3 to the power of 1 to get 3; raise 3 to the power of 3 to get 27; raise 3 to the power of 27 to get 7625597484987; raise 3 to the power of 7625597484987 to get a number much larger than the number of atoms in the universe, but which could still be written down in base 10, on 100 square kilometers of paper; then raise 3 to that power; and continue until you've exponentiated 7625597484987 times. That's 3^^^3. It's the smallest simple inconceivably huge number I know.
Now here's the moral dilemma. If neither event is going to happen to you personally, but you still had to choose one or the other:
Would you prefer that one person be horribly tortured for fifty years without hope or rest, or that 3^^^3 people get dust specks in their eyes?
I think the answer is obvious. How about you?
The first thing I thought when I read this question was that the dust specks were obviously preferable. Then I remembered that my intuition likes to round 3^^^3 down to something around twenty. Obviously, the dust specks are preferable to the torture for any number at all that I have any sort of intuitive grasp over.
But I found an argument that pretty much convinced me that the torture was the correct answer.
Suppose that instead of making this choice once, you will be faced with the same choice 10^17 times for the next fifty years (This number was chosen so that it was more than a million per second.) If you have a problem imagining the ability to make more than a million choices per second, imagine that you have a dial in front of you which goes from zero to a 10^17. If you set the dial to n, then 10^17-n people will get tortured starting now for the next fifty years, and n dust specks will fly into the eyes of each of 3^^^3 people during the next fifty years.
The dial starts at zero. For each unit that you turn the dial up, you are saving one person from being tortured by putting a dust speck in the eyes of each of the 3^^^3 people, the exact choice presented.
So, if you thought the correct answer was the dust specks, you'd turn the dial from zero to one right? And then you'd turn it from one to two, right?
But, if you turned the dial all the way up to 10^17, you'd effectively be rubbing the corneas of the 3^^^3 people with sandpaper for fifty years (of course, their corneas would wear through, and their eyes would come apart under that sort of abrasion. It would probably take less than a million dust specks per second to do that, but let's be conservative and make them smaller dust specks.) Even if you don't count the pain involved, they'd be blind forever. How many people would you blind in order to save one person from being tortured for fifty years? You probably wouldn't blind everyone on earth to save that one person from being tortured, and yet, there are (3^^^3)/(10^17) >> 7*10^9 people being blinded for each person you
have saved from torture.
So if your answer was the dust specks, you'd either end up turning the knob all the way up to 10^17, or you'd have to stop somewhere, because there's no escaping that in this scenario, there's a real dial in front of you, and you have to turn it to some n between 0 and a 10^17.
If you left the dial on, say, 10^10, I'd ask "Tell me, what is so special about the difference between hitting someone with 10^10 dust specs versus hitting them with 10^10+1, that wasn't special about the difference between hitting them with zero versus one?" If anything, the more dust specks there are, the less of a difference one more would make.
There are easily 10^17 continuous gradations between no inconvenience and having ones eyes turned to pulp, and I don't really see what would make any of them terribly different from each other. Yet n=0 is obviously preferable to n=10^17, and so, each individual increment of n must be bad.
This has nothing to do with the original question. You rephrased it so that it now asks if you'd rather torture one person or 3^^^3. Of course you rather torture one person than 3^^^3. That does not equal torturing one person or that 3^^^3 people get dust specks in their eyes for a fraction of a second.