There exists a 6-sided die that is weighted such that one of the 6 numbers has a 50% chance to come up and all the other numbers have a 1 in 10 chance. Nobody knows for certain which number the die is biased in favor of, but some people have had a chance to roll the die and see the result.
You get a chance to roll the die exactly once, with nobody else watching. It comes up 6. Running a quick Bayes's Theorem calculation, you now think there's a 50% chance that the die is biased in favor of 6 and a 10% chance for the numbers 1 through 5.
You then discover that there's a prediction market about the die. The prediction market says there's a 50% chance that "3" is the number the die is biased in favor of, and each other number is given 10% probability.
How do you update based on what you've learned? Do you make any bets?
I think I know the answer for this toy problem, but I'm not sure if I'm right or how it generalizes to real life...
I don't know if there are any economic theorems about how markets incorporate information from their participants, but if we assume that they incorporate all of the information then it must be that the market participants had seen every number equally often except for seeing one extra three. So you should update as though you had seen an extra three, to get odds of 1:1:5:1:1:5. Then it would be worth placing a bet on six and against each other number.