My understanding is that pilot wave theory (ie Bohmian mechanics) explains all the quantum physics with no weirdness like "superposition collapse" or "every particle interaction creates n parallel universes which never physically interfere with each other". It is not fully "local" but who cares?
Is there any reason at all to expect some kind of multiverse? Why is the multiverse idea still heavily referenced (eg in acausal trade posts)?
Edit April 11: I challenge the properly physics brained people here (I am myself just a Q poster) to prove my guess wrong: Can you get the Born rule with clean hands this way?
They also implicitly claim that in order for the Born rule to work [under pilot wave], the particles have to start the sim following the psi^2 distribution. I thinkk this is just false, and eg a wide normal distribution will converge to psi^2 over time as the system evolves. (For a non-adversarially-chosen system.) I don't know how to check this. Has someone checked this? Am I looking at this right?
Edit April 9: Well pilot wave vs many worlds is a holy war topic. People have pointed out excellent non-holy-war material:
- Perhaps just an infinite universe gives you the same philosophical conclusions/feels as many worlds? Who has already thought that idea through?
- Some of the stuff Wikipedia mentions relating to the "many universes different constants" idea (level 2 here) sounds like it might actually have a little rigor?? How to tell?? (These are optimized by the publishing system to sound like they would have rigor.)
Right, so we both agree that the randomness used to determine the result of a measurement in Copenhagen, and the information required to locate yourself in MWI is the same number of bits. But the argument for MWI was never that it had an advantage on this front, but rather that Copenhagen used up some extra bits in the machine that generates the output tape in order to implement the wavefunction collapse procedure. (Not to decide the outcome of the collapse, those random bits are already spoken for. Just the source code of the procedure that collapses the wavefunction and such.) Such code has to answer questions like: Under what circumstances does the wavefunction collapse? What determines the basis the measurement is made in? There needs to be code for actually projecting the wavefunction and then re-normalizing it. This extra complexity is what people mean when they say that collapse theories are less parsimonious/have extra assumptions.